RISC-V Security

Yann LOISEL, Security Architect, SiFive

January 2020
SiFive’s founders are the same UC Berkeley professor and PhDs who invented and have been leading the commercial implementation of the RISC-V Instruction Set Architecture (ISA) since 2010.
RISC-V security: motivations

- RISC–V ISA designed to address existing ISAs issues about security/secrecy/lack of rationale
 - Avoid secrecy in design

- RISC–V ISA design built on many years of experiences, mistakes, lack of anticipation
 - Get rid of legacy security

- RISC–V ISA future backed by the RISC-V Foundation, managing the standards and the assets
 - Shared rationale, sustainable design

- RISC–V ISA open to security audits and academic reviews
 - Improve auditability
RISC-V security: give trust

- Ability to do formal verifications, detecting inconsistencies with the standard, detecting additions
- Foster the verification industry
- Shared and sustainable effort because of an open standard
- Results can be public

- RISC-V Foundation Security Standing Committee created in 2018
- Best security practices

- Collaboration with other groups
 - TEE subgroup
 - Crypto extensions subgroup
 - Bit manip subgroup
 - Academic and industry together
RISC-V security: give trust

• With the open community, the risks are shared, the countermeasures are shared

• Open ISA allows a fully open-source hardware implementation
 • easy access to deep details, easy modification, testing, prototyping

• Open ISA could help for micro-architecture better security

• An action for the future, not a reaction to the past

• In line with industry concerns for more security assurance
 • IPSA
RISC-V security: add security, ease the security

Adding, extending is in the DNA of RISC-V

• Instructions extensions: add crypto instructions at micro architecture level
 • AES, SHA, TRNG
 • Bit manip

• Vector extensions: ease the use of cryptography for an easier use of the security

• Software architecture: secure monitor, secure boot, TEE APIs, attestation, ...

• Large scope, scalability, better consistency, longer sustainability
 • 32-bit, 64-bit, 128-bit, … : from small, single-core to large, multi-core systems

• Lot of initiatives: DARPA, Thalés-Microchip contest, ...
RISC-V security: privileges management

• Driven by the principles of the smallest attack surface in M mode and the least needed privilege
 • Delegate as much as possible
 • Even in M-mode, you couldn’t do what you want
 • Even in S-mode, you couldn’t run U code

• Native definitions of multiple privileges levels: M, S, U

• Privileged instruction set
• RISC-V Privileged Specification defines 4 levels of privilege, called Modes

• Machine mode is the highest privileged mode and the only required mode
 • Flexibility allows for a range of targeted implementations from simple MCUs to high-performance Application Processors

• Machine, Hypervisor, Supervisor modes each have Control and Status Registers (CSRs)

RISC-V Modes

<table>
<thead>
<tr>
<th>Level</th>
<th>Name</th>
<th>Abbr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>User/Application</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>Supervisor</td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td>(Hypervisor)</td>
<td>H</td>
</tr>
<tr>
<td>3</td>
<td>Machine</td>
<td>M</td>
</tr>
</tbody>
</table>

Supported Combinations of Modes

<table>
<thead>
<tr>
<th>Supported Levels</th>
<th>Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>2</td>
<td>M, U</td>
</tr>
<tr>
<td>3</td>
<td>M, S, U</td>
</tr>
<tr>
<td>4</td>
<td>M, H, S, U</td>
</tr>
</tbody>
</table>
RISC-V security: privileges management

- Configuration depending on system complexity
 - M, or M/U or M/S/U
 - M/S/U initially for large systems, running big OSes (linux)
 - M/S/U tends to become the standard even for "small" devices (w/o satp register)

- Traps (interrupts, exceptions) management delegation
 - By default, any interrupt goes into M-mode, but it can automatically be delegated to S-mode (for S and U interrupts) or U-mode (for U interrupts)
 - Designed for performances, but also good for security
RISC-V security: privileges management

- PMP: physical memory protection
- Defines memories areas access rights and conditions
Physical Memory Protection (PMP)

- **Can be used to enforce access restrictions on less privileged modes**
 - Prevent Supervisor and User Mode software from accessing unwanted memory

- **Up to 16 regions with a minimum region size of 4 bytes**

- **Ability to Lock a region**
 - A locked region enforces permissions on all accesses, including M-Mode
 - Only way to unlock a region is a Reset

Example PMP Memory Map

![Example PMP Memory Map Diagram]
RISC-V security: privileges management

- sPMP: similar to PMP but in S-mode
 - Proposed by the TEE WG
What are Control and Status Registers (CSRs)

- CSRs are Registers which contain the working state of a RISC-V machine

- CSRs are specific to a Mode
 - Machine Mode has ~17 CSRs (not including performance monitor CSRs)
 - Supervisor Mode has a similar number, though most are subsets of their equivalent Machine Mode CSRs
 - Machine Mode can also access Supervisor CSRs

- CSRs are defined in the RISC-V privileged specification
Supervisor CSRs

• **Most of the Machine mode CSRs have Supervisor mode equivalents**
 – Supervisor mode CSRs can be used to control the state of Supervisor and User Modes.
 – Most equivalent Supervisor CSRs have the same mapping as Machine mode without Machine mode control bits
 – `sstatus`, `stvec`, `sip`, `sie`, `sepc`, `scause`, `satp`, and more

• **`satp` - Supervisor Address Translation and Protection Register**
 – Used to control Supervisor mode address translation and protection
Virtual Memory

- RISC-V has support for Virtual Memory allowing for sophisticated memory management and OS support (Linux)

- Requires an S-Mode implementation
- **Sv32**
 - 32bit Virtual Address
 - 4KiB, 4MiB page tables (2 Levels)
- **Sv39** *(requires an RV64 implementation)*
 - 39bit Virtual Address
 - 4KiB, 2MiB, 1GiB page tables (3 Levels)
- **Sv48** *(requires an RV64 implementation)*
 - 48bit Virtual Address
 - 4KiB, 2MiB, 1 GiB, 512GB page tables (4 Levels)
- Page Tables also contain access permission attributes
RISC-V security: debug with security

• RISC-V debug specification standardizes the debug module

• And considers an authentication module, open and flexible
RISC-V SoC needs more security

- Scalable architecture
- Enhanced isolation
- Finer grained controls
- System level security
SiFive WorldGuard

- Cryptographic blocks (application, memories, ...)
- Secure boot, secure update
- Secure key provisioning
- Secure debug
- System-level isolation
SiFive WorldGuard
SiFive WorldGuard

- proposes a resources isolation solution at system level

- splits the system into distinct worlds, each world made of resources

- resources can be masters (cores, DMA channels, …), slaves (portions of memories, peripherals)

- complementary to RISC-V security and virtualization
SiFive WorldGuard Security architecture benefits

• Multi-level trust model for enhanced security and flexibility
 • Multiple worlds are hardware-controlled and protect memories and peripherals from illegal access
 • Supports multiple cores, multiple bus masters (ie. DMA controllers, caches, eFPGA…)
 • Complementary to what PMP offers for software protection

• Low system overhead
 • core agnostic
 • RISC-V ISA remains untouched
 • very low overhead on control logic for peripherals, memories and bus masters
 • very low impact on performances

• Fine grain control
 • Up to n individual worlds, identified by a WID (World ID)
 • Up to m memory regions per memory can be shared between different worlds.
 • Each peripheral has its own access control list per world.
RISC-V security: security rationale

• limited TCB: the *trusted core* and its firmware

• do not trust M-mode in other cores

• WG PMPs and WG filters are gate keepers, whatever happens on master side.

• goes beyond the single core security (PMP)
RISC-V security: conclusion

• secure, simple, scalable

• very limited impact on the firmware

• the system-level security solution RISC-V community needs

• demo at *embedded world 2020* in Nuremberg (feb 2020)

• specifications released in march 2020
QUESTIONS?