
Quelle con�ance
peut-on placer dans
les plateformes
matérielles qui
exécutent nos
applications?

Guillaume Hiet
Clémentine Maurice



Who are we?

Rennes

Guillaume Hiet

Assistant professor, CentraleSupélec
@GuillaumeHiet

Clémentine Maurice

CNRS researcher
@BloodyTangerine

2



Introduction







server



server



CPU #1 CPU #2 DRAM

5



CPU #1 CPU #2 DRAM

5



Intel CPU Core + HD graphics

PCH

DDR System Memory

Camera

SD Slot
Ethernet Wifi

SSD / HDD

BIOS/ME flash

USB ports

Audio

EC

ME

DDR Channel

PECI / SMBus

eSPI

USB

SATA

HDA/I2S

PCI Express

PCI Express

USB

USB

Display eDP

Display
DP

FDI DMI
Video Card

Display

DP

PCI Express

6



Intel CPU Core + HD graphics

PCH

DDR System Memory

Camera

SD Slot
Ethernet Wifi

SSD / HDD

BIOS/ME flash

USB ports

Audio

EC

ME

DDR Channel

PECI / SMBus

eSPI

USB

SATA

HDA/I2S

PCI Express

PCI Express

USB

USB

Display eDP

Display
DP

FDI DMI
Video Card

Display

DP

PCI Express

6



PCH

Audio

EC

ME

PECI / SMBus

eSPI

USB

SATAHDA/I2S

PCI Express

PCI Express

FDI DMI

GPU

Core

Core

Core

Core

L3 Slice

L3 Slice

L3 Slice

L3 Slice

Memory 
Controller

PCI Express

Display 
Controller

System Agent

7



PCH

Audio

EC

ME

PECI / SMBus

eSPI

USB

SATAHDA/I2S

PCI Express

PCI Express

FDI DMI

GPU

Core

Core

Core

Core

L3 Slice

L3 Slice

L3 Slice

L3 Slice

Memory 
Controller

PCI Express

Display 
Controller

System Agent

7



Front End Instruction
Cache Tag

µOP Cache
Tag

L1 Instruction Cache
32KiB 8-Way Instruction

TLB

Instruction Fetch & PreDecode
(16 B window)

Instruction Queue

MOP

MicroCode
Sequencer

ROM
(MS ROM)

Decoded Stream Buffer (DSB)
(µOP Cache)

(1.5k µOPs; 8-Way)
(64 B window)

Branch
Predictor

(BPU)

Allocation Queue (IDQ) (128, 2x64 µOPs)

L2
 C

a
ch

e
2

5
6

K
iB

 4
-W

a
y

U
n
ifie

d
 S

T
LB

 

Execution Engine

Memory Subsystem

L1 Data Cache
32KiB 8-Way

Data TLB

Scheduler
Unified Reservation Station (RS)

(97 entries)

Integer Physical Register File
(180 Registers)

Vector Physical Register File
(168 Registers)

Port 0 Port 1 Port 5 Port 6 Port 2 Port 3 Port 4 Port 7

INT ALU
INT DIV

INT Vect ALU
INT Vect MUL

FP FMA
AES

Vect String
FP DIV

INT ALU
INT MUL

INT Vect ALU
INT Vect MUL

FP FMA
Bit Scan

INT ALU
Vect Shuffle
INT Vect ALU

LEA

INT ALU
Branch

AGU
Load Data

AGU
Load Data

AGU

(56 entries)
Store Buffer & Forwarding

3
2
B

/c
y
c
le

µOPµOPµOPµOPµOPµOPµOPµOP

(50, 2x25 entries)

16 Bytes/cycle

µOPµOPµOPµOPµOPµOP

Macro-Fusion

MOP MOP MOP MOP

MOPMOP MOP MOP MOP MOP

Micro-Fusion

6
4
B

/c
y
c
le

6
4
B

/c
y
c
le

Stack
Engine

(SE)

Adder Adder Adder

1-4 µOPs µOP µOPµOPµOP

Complex
Decoder

5-Way Decode 

Simple
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

4 µOPs

MUX

5 µOPs

 Loop Stream
Detector (LSD) 

Register Alias Table (RAT)
4 µOP

Branch Order Buffer
(BOB) (48-entry)

Rename / Allocate / Retirement
ReOrder Buffer (224 entries)

Zeroing IdiomsMove Elimination Ones Idioms

Line Fill Buffers (LFB)
(10 entries)

Store Data

3
2
B

/c
y
c
le

32B/cycle

256bit/cycle

Load Buffer
(72 entries)

6 µOPs

EUs

µOPµOPµOPµOPµOPµOPµOPµOP

C
o
m

m
o
n

 D
a
ta

 B
u

s
e
s
 (C

D
B

s
)

Int

In
t V

e
c
t

FP

Load

Store

Branch

To L3

32B/cycle

Hardware platforms tend to be more and more complex

8



Front End Instruction
Cache Tag

µOP Cache
Tag

L1 Instruction Cache
32KiB 8-Way Instruction

TLB

Instruction Fetch & PreDecode
(16 B window)

Instruction Queue

MOP

MicroCode
Sequencer

ROM
(MS ROM)

Decoded Stream Buffer (DSB)
(µOP Cache)

(1.5k µOPs; 8-Way)
(64 B window)

Branch
Predictor

(BPU)

Allocation Queue (IDQ) (128, 2x64 µOPs)

L2
 C

a
ch

e
2

5
6

K
iB

 4
-W

a
y

U
n
ifie

d
 S

T
LB

 

Execution Engine

Memory Subsystem

L1 Data Cache
32KiB 8-Way

Data TLB

Scheduler
Unified Reservation Station (RS)

(97 entries)

Integer Physical Register File
(180 Registers)

Vector Physical Register File
(168 Registers)

Port 0 Port 1 Port 5 Port 6 Port 2 Port 3 Port 4 Port 7

INT ALU
INT DIV

INT Vect ALU
INT Vect MUL

FP FMA
AES

Vect String
FP DIV

INT ALU
INT MUL

INT Vect ALU
INT Vect MUL

FP FMA
Bit Scan

INT ALU
Vect Shuffle
INT Vect ALU

LEA

INT ALU
Branch

AGU
Load Data

AGU
Load Data

AGU

(56 entries)
Store Buffer & Forwarding

3
2
B

/c
y
c
le

µOPµOPµOPµOPµOPµOPµOPµOP

(50, 2x25 entries)

16 Bytes/cycle

µOPµOPµOPµOPµOPµOP

Macro-Fusion

MOP MOP MOP MOP

MOPMOP MOP MOP MOP MOP

Micro-Fusion

6
4
B

/c
y
c
le

6
4
B

/c
y
c
le

Stack
Engine

(SE)

Adder Adder Adder

1-4 µOPs µOP µOPµOPµOP

Complex
Decoder

5-Way Decode 

Simple
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

4 µOPs

MUX

5 µOPs

 Loop Stream
Detector (LSD) 

Register Alias Table (RAT)
4 µOP

Branch Order Buffer
(BOB) (48-entry)

Rename / Allocate / Retirement
ReOrder Buffer (224 entries)

Zeroing IdiomsMove Elimination Ones Idioms

Line Fill Buffers (LFB)
(10 entries)

Store Data

3
2
B

/c
y
c
le

32B/cycle

256bit/cycle

Load Buffer
(72 entries)

6 µOPs

EUs

µOPµOPµOPµOPµOPµOPµOPµOP

C
o
m

m
o
n

 D
a
ta

 B
u

s
e
s
 (C

D
B

s
)

Int

In
t V

e
c
t

FP

Load

Store

Branch

To L3

32B/cycle

Hardware platforms tend to be more and more complex

8



Why such complexity?

Performance summary

CPU time= Instructions
Program

× Clock cycles
Instruction

× Seconds
Clock cycle

How to increase the performances?

9



Why do we need caches?

Latency

< 0,3ns

1 ns
3 ns
10 ns

100 ns

0,03-0,15
 ms

1-10 ms

10



Intel CPU Core + HD 
graphics

PCH

DDR System Memory

Camera

SD Slot

Ethernet

Wifi

SSD / HDD

BIOS/ME 
flash

USB ports

Audio

EC

ME

DDR Channel

PECI / SMBus

eSPI

USB

SATAHDA/I2S

PCI ExpressPCI Express

USB

USB

Display
eDP

Display
DP

FDI DMI

Video 
Card

Display
DP

PCI Express

UEFI Firmware

Hypervisor

OS

EC Firmware SSD FirmwareVideo Card 
Firmware

NIC
Firmware ME OS

App 1 App 2 App n…

ME 
App 1

ME 
App m

…

Software components

Hardware components

Hardware platforms execute multiple so�ware components

11



Intel CPU Core + HD 
graphics

PCH

DDR System Memory

Camera

SD Slot

Ethernet

Wifi

SSD / HDD

BIOS/ME 
flash

USB ports

Audio

EC

ME

DDR Channel

PECI / SMBus

eSPI

USB

SATAHDA/I2S

PCI ExpressPCI Express

USB

USB

Display
eDP

Display
DP

FDI DMI

Video 
Card

Display
DP

PCI Express

UEFI Firmware

Hypervisor

OS

EC Firmware SSD FirmwareVideo Card 
Firmware

NIC
Firmware ME OS

App 1 App 2 App n…

ME 
App 1

ME 
App m

…

Software components

Hardware components

Hardware platforms execute multiple so�ware components

11



Intel CPU Core + HD graphics

PCH

DDR System Memory

Camera

SD Slot
Ethernet Wifi

SSD / HDD

BIOS/ME flash

USB ports

Audio

EC

ME

DDR Channel

PECI / SMBus

eSPI

USB

SATA

HDA/I2S

PCI Express

PCI Express

USB

USB

Display eDP

Display
DP

FDI DMI
Video Card

Display

DP

PCI Express

VT-x SMAP

SMM 
isolation pagination 

+ NX

SMEPCET SGX

MPX

HP Sure Start

AMT

BootGuard

VT-d

Hardware platforms implement more and more security mechanisms

12



Intel CPU Core + HD graphics

PCH

DDR System Memory

Camera

SD Slot
Ethernet Wifi

SSD / HDD

BIOS/ME flash

USB ports

Audio

EC

ME

DDR Channel

PECI / SMBus

eSPI

USB

SATA

HDA/I2S

PCI Express

PCI Express

USB

USB

Display eDP

Display
DP

FDI DMI
Video Card

Display

DP

PCI Express

VT-x SMAP

SMM 
isolation pagination 

+ NX

SMEPCET SGX

MPX

HP Sure Start

AMT

BootGuard

VT-d

Hardware platforms implement more and more security mechanisms

12



Intel CPU Core + HD graphics

PCH

DDR System Memory

Camera

SD Slot
Ethernet Wifi

SSD / HDD

BIOS/ME flash

USB ports

Audio

EC

ME

DDR Channel

PECI / SMBus

eSPI

USB

SATA

HDA/I2S

PCI Express

PCI Express

USB

USB

Display eDP

Display
DP

FDI DMI
Video Card

Display

DP

PCI Express

CVE-2017-5705,6,7

Row Hammer

CVE-2017-5689

SMM cache 
poisoning

Hardware platforms can be exploited by so�ware attacks

13



Intel CPU Core + HD graphics

PCH

DDR System Memory

Camera

SD Slot
Ethernet Wifi

SSD / HDD

BIOS/ME flash

USB ports

Audio

EC

ME

DDR Channel

PECI / SMBus

eSPI

USB

SATA

HDA/I2S

PCI Express

PCI Express

USB

USB

Display eDP

Display
DP

FDI DMI
Video Card

Display

DP

PCI Express

CVE-2017-5705,6,7

Row Hammer

CVE-2017-5689

SMM cache 
poisoning

Hardware platforms can be exploited by so�ware attacks

13



Outline

1. Introduction

2. Side-channel attacks on SGX

3. Detection of Attacks Against the System Management Mode

4. SILM Thematic Semester

5. Conclusion

14



Side-channel attacks on SGX



Side channels

I channels that are outside of the functional speci�cation, i.e., that are not
supposed to carry useful information

I however they can leak secret information, exploiting implementations
I can be performed by so�ware, e.g., measuring memory accesses

→ attacker monitors which cache lines are accessed, not the content

15



Side channels

I channels that are outside of the functional speci�cation, i.e., that are not
supposed to carry useful information

I however they can leak secret information, exploiting implementations

I can be performed by so�ware, e.g., measuring memory accesses

→ attacker monitors which cache lines are accessed, not the content

15



Side channels

I channels that are outside of the functional speci�cation, i.e., that are not
supposed to carry useful information

I however they can leak secret information, exploiting implementations
I can be performed by so�ware, e.g., measuring memory accesses

→ attacker monitors which cache lines are accessed, not the content

15



Side channels

I channels that are outside of the functional speci�cation, i.e., that are not
supposed to carry useful information

I however they can leak secret information, exploiting implementations
I can be performed by so�ware, e.g., measuring memory accesses

→ attacker monitors which cache lines are accessed, not the content

15



Sandboxes vs Trusted Execution Environments (TEEs)

I sandboxes assume trusted system and untrusted
application

→ protects system from harm

→ e.g., JavaScript in the browser

I TEEs assume an untrusted system and a trusted
application

→ isolates the application

→ e.g., cloud, DRM, app that manipulates secrets...

16



Sandboxes vs Trusted Execution Environments (TEEs)

I sandboxes assume trusted system and untrusted
application

→ protects system from harm

→ e.g., JavaScript in the browser

I TEEs assume an untrusted system and a trusted
application

→ isolates the application

→ e.g., cloud, DRM, app that manipulates secrets...

16



Trusted Execution Environments

Threat model

I malicious OS
I only the CPU is trusted

→ TEE memory is encrypted→ inaccessible to the OS

Implementations

I Intel: SGX
I ARM and AMD: TrustZone

17



Trusted Execution Environments

Threat model

I malicious OS
I only the CPU is trusted

→ TEE memory is encrypted→ inaccessible to the OS

Implementations

I Intel: SGX
I ARM and AMD: TrustZone

17



Trusted Execution Environments

Threat model

I malicious OS
I only the CPU is trusted

→ TEE memory is encrypted→ inaccessible to the OS

Implementations

I Intel: SGX
I ARM and AMD: TrustZone

17



What is SGX?

Application

Trusted part

Ca
ll

Ga
te

Untrusted part

Create Enclave

Call Trusted Fnc.

. . .

Trusted Fnc.

Return

Operating System

18



Let’s go back to the threat model

Previous work showed that code inside an enclave
is not protected from side channels from outside

What if the enclave contains malicious code?

19



Let’s go back to the threat model

Previous work showed that code inside an enclave
is not protected from side channels from outside

What if the enclave contains malicious code?

19



SGX limitations

Classical exploits cannot be mounted within SGX:
I no syscalls
I no shared memory/libraries
I no interprocess communication
I blocked instructions

20



Side-channel attacks on SGX (Schwarz et al. 2017)

SGX

Malware
(Prime+Probe)

Loader

Attacker

L1/L2 Cache

SGX

RSA
Signature
+ private key

Public API

Victim

L1/L2 Cache

Shared LLC

21



Prime+Probe (1/2)

I exploits timing di�erences
between:

– cached data (fast)
– uncached data (slow)

I targets a cache set
I works across CPU cores (shared LLC) 100 200 300 400

101

104

107

Access time [CPU] cycles

N
um

be
ro

fa
cc

es
se

s

cache hits cache misses

22



Prime+Probe (2/2)

Victim address space Cache Attacker address space

23



Prime+Probe (2/2)

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., �lls, the cache (no shared memory)

23



Prime+Probe (2/2)

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., �lls, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

23



Prime+Probe (2/2)

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., �lls, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

23



Prime+Probe (2/2)

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., �lls, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

fast access

23



Prime+Probe (2/2)

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., �lls, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

slow access

23



Attack on RSA square-and-multiply exponentiation (1/2)

mbedTLS version 2.3.0 (�xed since)

Algorithm 1: Square-and-multiply exponentiation
Input: base b, exponent e, modulus n
Output: be mod n
X← 1
for i← bitlen(e) downto 0 do

X←multiply(X,X)
if ei = 1 then

X←multiply(X,b)
end

end
return X

24



Attack on RSA square-and-multiply exponentiation (2/2)

I raw Prime+Probe trace on the bu�er holding the multiplier b

I processed with a simple moving average
I allows to clearly recover the bits of the secret exponent

→ 96% of a 4096-bit RSA key from a single trace, full key using 11 traces

25



Attack on RSA square-and-multiply exponentiation (2/2)

I raw Prime+Probe trace on the bu�er holding the multiplier b
I processed with a simple moving average

I allows to clearly recover the bits of the secret exponent

→ 96% of a 4096-bit RSA key from a single trace, full key using 11 traces

25



Attack on RSA square-and-multiply exponentiation (2/2)

I raw Prime+Probe trace on the bu�er holding the multiplier b
I processed with a simple moving average
I allows to clearly recover the bits of the secret exponent

→ 96% of a 4096-bit RSA key from a single trace, full key using 11 traces

1 1 1 00 1 1 1 01 1 1 00000001 000 1 0 1 00 1 1 00 1 1 01 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

25



Timers

We need to di�erentiate between events a few
nanoseconds apart:
I rdtsc instruction does that very well
I unprivileged. . .

I . . . but not permitted inside SGX enclaves

Build your own timer!

I start a thread that continuously increments a global variable
I the global variable is our timestamp

26



Timers

We need to di�erentiate between events a few
nanoseconds apart:
I rdtsc instruction does that very well
I unprivileged. . .
I . . . but not permitted inside SGX enclaves

Build your own timer!

I start a thread that continuously increments a global variable
I the global variable is our timestamp

26



Timers

We need to di�erentiate between events a few
nanoseconds apart:
I rdtsc instruction does that very well
I unprivileged. . .
I . . . but not permitted inside SGX enclaves

Build your own timer!

I start a thread that continuously increments a global variable
I the global variable is our timestamp

26



How about detection?

I OS cannot inspect the enclave: traditional methods fail

I performance counters can detect cache attacks→ high rate of cache misses
I however they are disabled inside the enclave

L1 Hits L1 Misses L3 Hits L3 Misses
0

0.5

1

·109

Pe
rf

or
m

an
ce

co
un

te
rv

al
ue Native

SGX

27



How about detection?

I OS cannot inspect the enclave: traditional methods fail
I performance counters can detect cache attacks→ high rate of cache misses

I however they are disabled inside the enclave

L1 Hits L1 Misses L3 Hits L3 Misses
0

0.5

1

·109

Pe
rf

or
m

an
ce

co
un

te
rv

al
ue Native

SGX

27



How about detection?

I OS cannot inspect the enclave: traditional methods fail
I performance counters can detect cache attacks→ high rate of cache misses
I however they are disabled inside the enclave

L1 Hits L1 Misses L3 Hits L3 Misses
0

0.5

1

·109

Pe
rf

or
m

an
ce

co
un

te
rv

al
ue Native

SGX

27



Lessons learned

I hardware optimizations (e.g., cache) can create side channels to exploit
weak so�ware implementations

I SGX does not protect from side-channel attacks
→ enclaves are not a magic protection
→ Intel: ”this is not in the threat model”

I SGX can actually protect malware
→ security features can be abused too
→ rethink enclave protection?

28



Lessons learned

I hardware optimizations (e.g., cache) can create side channels to exploit
weak so�ware implementations

I SGX does not protect from side-channel attacks
→ enclaves are not a magic protection
→ Intel: ”this is not in the threat model”

I SGX can actually protect malware
→ security features can be abused too
→ rethink enclave protection?

28



Lessons learned

I hardware optimizations (e.g., cache) can create side channels to exploit
weak so�ware implementations

I SGX does not protect from side-channel attacks
→ enclaves are not a magic protection
→ Intel: ”this is not in the threat model”

I SGX can actually protect malware
→ security features can be abused too
→ rethink enclave protection?

28



Detection of Attacks Against the
System Management Mode



Computers rely on �rmware

Where can we �nd �rmware?

I Hard disks, network cards, etc.
I Motherboards BIOS/UEFI

What is it?
I Low-level so�ware
I Tightly linked to hardware
I Stored into a dedicated �ash memory

Boot time vs Runtime

I Early execution and con�guration
I Highly privileged runtime so�ware

Hardware

UEFI
Firmware

Operating
System

Applications

Pr
iv

ile
ge

s

More

Less

29



What is the problem?

BIOSs are o�en written in unsafe languages (i.e., C & assembly)

I Memory safety errors (e.g., use a�er free or bu�er over�ow)
I BIOSs are not exempt from vulnerabilities (Kallenberg et al. 2013; Bazhaniuk

et al. 2015)

Why compromise a BIOS?

I Malware can be hard to detect (stealth)
I Malware can be persistent (survives even if the HDD/SSD is changed)

What do we want?

I Boot time integrity
I Runtime integrity (some platforms are rarely rebooted)

30



What are the currently used solutions?

Boot time

I Signed updates
I Signature veri�cation before executing
I Measurements and reporting to a TPM chip
I Immutable hardware root of trust

Immutable
Root of Trust

UEFI
Firmware

Bootloader

Operating
System

Signed
Updates

Verify
Measure &

Report

Runtime
Isolation of critical runtime services available while the OS is running:

I BIOS update, power management, UEFI variables handling, etc.

→ our focus is on the System Management Mode (SMM)

31



What are the currently used solutions?

Boot time

I Signed updates
I Signature veri�cation before executing
I Measurements and reporting to a TPM chip
I Immutable hardware root of trust

Immutable
Root of Trust

UEFI
Firmware

Bootloader

Operating
System

Signed
Updates

Verify
Measure &

Report

Runtime
Isolation of critical runtime services available while the OS is running:

I BIOS update, power management, UEFI variables handling, etc.

→ our focus is on the System Management Mode (SMM)

31



Introducing the System Management Mode (SMM)

SMM is the highest privileged execution mode for x86 processors.

How to enter the SMM?

I Trigger a System Management Interrupt (SMI)
I SMIs code & data are stored in a protected memory region: System

Management RAM (SMRAM)

BIOS code is not exempt from vulnerabilities a�ecting SMM
(Bazhaniuk et al. 2015; Bulygin et al. 2017; Pujos 2016)

Why is it interesting for an attacker?

I Only mode that can write to the �ash containing the BIOS
I Arbitrary code execution in SMM gives full control of the platform

32



Our objective

Our goal is to detect attacks that modify the expected behavior of the SMM by
monitoring its behavior at runtime.

Monitor
Runtime
Firmware

Raise alert or
Stop execution or

...

Response

Behavior
Monitoring

Such goal raises the following questions:

I How to ensure the integrity of the monitor?
I How to de�ne a correct behavior?
I How to monitor?

33



Approach overview (Chevalier et al. 2017)

Co-processor RAM Processor RAM

TargetMonitor

Unidirectional
FIFO

Co-processor Processor

Expected
target behavior

SMM code

How to ensure the
integrity of the monitor?

Semantic gap?
How to monitor?

bridging the semantic gap

LLVM-based
Compiler

SMM source
code

BIOS source code

How to de�ne a correct behavior?

34



Approach overview (Chevalier et al. 2017)

Co-processor RAM Processor RAM

TargetMonitor

Unidirectional
FIFO

Co-processor Processor

Expected
target behavior

SMM code

How to ensure the
integrity of the monitor?

Semantic gap?
How to monitor?

bridging the semantic gap

LLVM-based
Compiler

SMM source
code

BIOS source code

How to de�ne a correct behavior?

34



Approach overview (Chevalier et al. 2017)

Co-processor RAM Processor RAM

TargetMonitor

Unidirectional
FIFO

Co-processor Processor

Expected
target behavior

SMM code

How to ensure the
integrity of the monitor?

Semantic gap?
How to monitor?

bridging the semantic gap

LLVM-based
Compiler

SMM source
code

BIOS source code

How to de�ne a correct behavior?

34



Approach overview (Chevalier et al. 2017)

Co-processor RAM Processor RAM

TargetMonitor

Unidirectional
FIFO

Co-processor Processor

Expected
target behavior

Instrumented
SMM code

How to ensure the
integrity of the monitor?

Semantic gap?
How to monitor?

bridging the semantic gap

LLVM-based
Compiler

SMM source
code

BIOS source code

How to de�ne a correct behavior?

34



Approach overview (Chevalier et al. 2017)

Co-processor RAM Processor RAM

TargetMonitor

Unidirectional
FIFO

Co-processor Processor

Expected
target behavior

Instrumented
SMM code

How to ensure the
integrity of the monitor?

Semantic gap?
How to monitor?

bridging the semantic gap

LLVM-based
Compiler

SMM source
code

BIOS source code

How to de�ne a correct behavior?

34



How to de�ne a correct behavior?

Our use case: SMM code

I Written in unsafe languages (i.e., C & assembly)
→ Such languages are o�en targeted by attacks hijacking the control �ow

I Tightly coupled to hardware
→ Such so�ware modi�es hardware con�guration registers

Control Flow Graph (CFG)
De�ne the control �ow that the so�ware is expected to follow

→ Control Flow Integrity (CFI)

Invariants on CPU registers
De�ne rules that registers are expected to satisfy

→ CPU registers integrity

35



Control Flow Integrity (CFI): principle

Example
void auth(int a, int b) {

char buffer[512];

[...vuln...]

verification(buffer);

}

void verification(char *input) {

if (strcmp(input, "secret") == 0)

authenticated();

else

non_authenticated();

}

Simpli�ed graph

authveri�cation
Non

authenticated

Authenticated

36



Control Flow Integrity (CFI): principle

Example
void auth(int a, int b) {

char buffer[512];

[...vuln...]

verification(buffer);

}

void verification(char *input) {

if (strcmp(input, "secret") == 0)

authenticated();

else

non_authenticated();

}

Simpli�ed graph

authveri�cation
Non

authenticated

Authenticated

36



Control Flow Integrity (CFI): principle

Example
void auth(int a, int b) {

char buffer[512];

[...vuln...]

verification(buffer);

}

void verification(char *input) {

if (strcmp(input, "secret") == 0)

authenticated();

else

non_authenticated();

}

Simpli�ed graph

authveri�cation
Non

authenticated

Authenticated

Goal: constrain the execution path to follow a control-�ow graph (CFG)

36



CPU registers integrity

SMM code is tightly coupled to hardware

I Generic detection methods (e.g., CFI) are not aware of hardware speci�cities
I Adhoc detection methods are needed

Some interesting registers for an attacker

I SMBASE: De�nes the SMM entry point
I CR3: Physical address of the page directory

→ Their value is saved in memory and is not supposed to change at runtime

How to protect such registers?

I Send the expected values at boot time
I Send current values at runtime to detect any discrepancy

37



Communication channel constraints

Security constraints

I Message integrity
I Chronological order
I Exclusive access

Performance constraints

I Acceptable latency of an SMI as de�ned by Intel BIOS Test Suite: 150µs
I More than 150µs per SMI handler leads to degradation of performance or

user experience

38



Communication channel design

Additional hardware component

I Chronological order
→ FIFO

I Message integrity
→ Restricted FIFO

I Exclusive access
→ Check if CPU is in SMM (SMIACT# signal)

I Performance
→ Use a low latency interconnect

target

Restricted
FIFO

monitor

Co-processor

Processor

push
In SMM?

(SMIACT#)

pop

39



Our experimental setup

Our prototype is implemented in a simulated and emulated environment

SMM code implementations used

I EDK2: foundation of many BIOSes (Apple, HP, Intel,...)
→ UEFI Variables SMI handlers

I coreboot: perform hardware initialization (used on some Chromebooks)
→ Hardware-speci�c SMI handlers

We want to emulate SMM environment and features
QEMU emulator for security evaluation

We want to simulate accurately the performance impact
gem5 simulator for performance evaluation

40



Security evaluation

We simulated attacks that exploited vulnerabilities similar to those found in
real-world BIOSes

Vulnerability Attack Target Security Advisories Detected

Bu�er over�ow Return address CVE-2013-3582 Yes
Arbitrary write Function pointer CVE-2016-8103 Yes
Arbitrary write SMBASE LEN-4710 Yes
Insecure call Function pointer LEN-8324 Yes

41



Running time overhead for SMI handlers

I Under the 150 microseconds limit de�ned by Intel
I Most of the communication overhead is due to the shadow call stack

EDK2

SetVariable GetVariable Query
VariableInfo

GetNext
VariableName

0

10

20

30

40

50

Ti
m

e
(m

ic
ro

se
co

nd
s) Original

Communication overhead
Instrumentation overhead

coreboot

i82801gx
APMC

i82801gx
TCO

i82801gx
PM1

AMD Agesa
APMC

AMD Agesa
GPE

0.0

0.5

1.0

1.5

2.0

2.5

3.0

42



Lessons learned

I SMM code can be vulnerable to memory errors
I Attackers exploiting such vulnerabilities can gain full control of the

platform

I We can detect such attacks using a behavior and event-based intrusion
detection system implemented on an isolated co-processor

I Acceptable performance (< 150µs Intel threshold)

I What can we do next?
– React and restore the platform in a sane state
– Implement other detection approaches to detect other classes of attacks (e.g

non-control data attacks)

43



Lessons learned

I SMM code can be vulnerable to memory errors
I Attackers exploiting such vulnerabilities can gain full control of the

platform

I We can detect such attacks using a behavior and event-based intrusion
detection system implemented on an isolated co-processor

I Acceptable performance (< 150µs Intel threshold)

I What can we do next?
– React and restore the platform in a sane state
– Implement other detection approaches to detect other classes of attacks (e.g

non-control data attacks)

43



Lessons learned

I SMM code can be vulnerable to memory errors
I Attackers exploiting such vulnerabilities can gain full control of the

platform

I We can detect such attacks using a behavior and event-based intrusion
detection system implemented on an isolated co-processor

I Acceptable performance (< 150µs Intel threshold)

I What can we do next?
– React and restore the platform in a sane state
– Implement other detection approaches to detect other classes of attacks (e.g

non-control data attacks)

43



SILM



Cybersecurity thematic semesters

Objectives

I Promote the scienti�c, teaching and industrial transfer activities on a
speci�c subject

I Identify scienti�c and technological challenges in that �eld
I Propose a strategic action plan

Organization and funding
I Funded by the DGA
I Managed by Inria, on behalf of all the partners of the PEC research centre

(Pôle d’excellence cyber)
I Led by one or several researchers from PEC partners

https://semestres-cyber.inria.fr/en/

44

https://semestres-cyber.inria.fr/en/


SILM thematic semester

Actions

I Organization of di�erent events: a summer school, dedicated workshops
and a regular seminar

I Animation of a working group and publication of a white-paper
I Invitation of researchers

https://silm.inria.fr/
45

https://silm.inria.fr/


Three complementary research areas

1. Analysing the behavior and state of hardware components
– Fuzzing
– Reverse-engineering
– Trace mechanisms
– Automated speci�cation analysis

2. Assessing the security of these hardware components
– Side-channel attacks
– Fault injection
– Exploiting unspeci�ed behaviors

3. Detecting or preventing so�ware attacks
– Using dedicated hardware components
– So�ware countermeasures against hardware vulnerabilities

46



Organization team

G. Hiet
(CS/Inria, CIDRE)

Project coordinator, Workshops, Working Group & White Book

J.-L. Lanet C. Maurice F. Tronel R. Lashermes
(Inria LHS/CIDRE) (CNRS, EMSEC) (CS/Inria, CIDRE) (Inria)

Workshops Summer school Workshops, Summer
school

Seminar

47



SILM Summer School of the GDR Sécurité Informatique

I 47 participants from 7 countries: students, young researchers and engineers
I Lectures, labs and CTF, over 4 days and a half
I Organizing committee: Clémentine Maurice, Frédéric Tronel
I Slides and videos of the presentations available on the web site

https://silm-school.inria.fr/

48

https://silm-school.inria.fr/


SILM Workshop 2019

I November 20-21 2019 in Rennes, France during the European Cyber Week
I First session in common with C&ESAR conference
I 11 invited speakers + 1 paper accepted by C&ESAR conference
I Organizing committee: Guillaume Hiet, Frédéric Tronel, Jean-Louis Lanet
I Slides and videos of the presentations available on the web site

https://silm-workshop.inria.fr

49

https://silm-workshop.inria.fr


SILM Workshop 2020

I June 19, 2020 in Genova, Italy
I Workshop collocated with the 5th IEEE European Symposium on Security

and Privacy
I Invited speakers + CFP
I Organizing committee: Guillaume Hiet, Frédéric Tronel, Jean-Louis Lanet
I Submit articles!

https://silm-workshop-2020.inria.fr

50

https://silm-workshop-2020.inria.fr


Seminar and Working Group

SILM Seminar

I One Friday/month, 2 presentations, at Inria in Rennes, France
I Organizing committee: Ronan Lashermes
I Slides and videos of the presentations available on the web site

https://semestres-cyber.inria.fr/en/silm-seminar/

Working group

I Objectives: review the state-of-the-art, identify scienti�c challenges,
technical obstacles, industrial transfer perspectives

I Managed by Guillaume Hiet
I Deliverables and outcomes: white paper + list of project proposals that

should be funded in priority

51

https://semestres-cyber.inria.fr/en/silm-seminar/


Conclusion



Conclusion

Vulnerabilities on CPU micro-architectures and �rmware are a serious issue

I Be careful of the considered threat model
I O�en combined vulnerabilities in hardware (weak isolation) and so�ware

(use of vulnerable algorithms)

What can we do?

I Remove hardware optimization (HT, speculative execution, cache, etc.)?
– Implies a huge impact on performances!

I Patch vulnerable code
– How can we patch all the vulnerabilities? What about third parties?

I Propose generic solutions combining hardware and so�ware
– We need hardware support (same story as memory errors)
– Such mechanism has to be con�gured by so�ware (OS, application or compiler

support)

52



Bibliography

Bazhaniuk, Oleksandr et al. (2015). “A new class of vulnerabilities in SMI handlers”. CanSecWest,
Vancouver, Canada.

Bulygin, Yuriy et al. (2017). “BARing the System: New vulnerabilities in Coreboot & UEFI based
systems”. REcon Brussels.

Chevalier, Ronny et al. (Dec. 2017). “Co-processor-based Behavior Monitoring: Application to the
Detection of Attacks Against the System Management Mode”. In: ACSAC 2017 - 33rd Annual
Computer Security Applications Conference. Vol. 2017. Proceedings of the 33rd Annual Computer
Security Applications Conference. Orlando, United States: ACM, pp. 399–411. doi:
10.1145/3134600.3134622. url: https://hal.inria.fr/hal-01634566.

Kallenberg, Corey et al. (2013). “Defeating Signed BIOS Enforcement”. EkoParty, Buenos Aires.
Pujos, Bruno (2016). SMM unchecked pointer vulnerability. url: http://esec-

lab.sogeti.com/posts/2016/05/30/smm-unchecked-pointer-vulnerability.html.
Schwarz, Michael et al. (2017). “Malware Guard Extension: Using SGX to Conceal Cache Attacks”. In:
DIMVA.

53

https://doi.org/10.1145/3134600.3134622
https://hal.inria.fr/hal-01634566
http://esec-lab.sogeti.com/posts/2016/05/30/smm-unchecked-pointer-vulnerability.html
http://esec-lab.sogeti.com/posts/2016/05/30/smm-unchecked-pointer-vulnerability.html


Control Flow Integrity (CFI): type-based veri�cation

We focus on indirect branches integrity

Type-based veri�cation
Ensures the integrity of indirect calls

typedef struct SomeStruct {

[...]

char (*foo)(int);

} SomeStruct;

int bar(SomeStruct *s) {

char c;

[...]

c = s->foo(31);

[...]

}

54



Control Flow Integrity (CFI): type-based veri�cation

We focus on indirect branches integrity

Type-based veri�cation
Ensures the integrity of indirect calls

typedef struct SomeStruct {

[...]

char (*foo)(int);

} SomeStruct;

int bar(SomeStruct *s) {

char c;

[...]

c = s->foo(31);

[...]

}

54



Control Flow Integrity (CFI): type-based veri�cation

We focus on indirect branches integrity

Type-based veri�cation
Ensures the integrity of indirect calls

typedef struct SomeStruct {

[...]

char (*foo)(int);

} SomeStruct;

int bar(SomeStruct *s) {

char c;

[...]

c = s->foo(31);

[...]

}

54



Control Flow Integrity (CFI): type-based veri�cation

We focus on indirect branches integrity

Type-based veri�cation
Ensures the integrity of indirect calls

typedef struct SomeStruct {

[...]

char (*foo)(int);

} SomeStruct;

int bar(SomeStruct *s) {

char c;

[...]

c = s->foo(31);

[...]

}

Target RuntimeCompile time

Monitor
RuntimeCompile time

Message

Call Site ID 1561

Target
Address

0x0fffb804

Message
Instrumented

SMM code

Message

Call Site ID 1561

Target
Address

0x0fffb804

MessageCall Site ID Type

1561 i8(i32)

4852 i32(i8)
... ...

Function Address Type

0x0fffb804 i8(i32)

0x0befca04 i32()
... ...

Compilation

SMM source
code

valid?

54



Control Flow Integrity (CFI): type-based veri�cation

We focus on indirect branches integrity

Type-based veri�cation
Ensures the integrity of indirect calls

typedef struct SomeStruct {

[...]

char (*foo)(int);

} SomeStruct;

int bar(SomeStruct *s) {

char c;

[...]

c = s->foo(31); /* Call Site ID = 1561 */

[...]

}

Target RuntimeCompile time

Monitor
RuntimeCompile time

Message

Call Site ID 1561

Target
Address

0x0fffb804

Message
Instrumented

SMM code

Message

Call Site ID 1561

Target
Address

0x0fffb804

MessageCall Site ID Type

1561 i8(i32)

4852 i32(i8)
... ...

Function Address Type

0x0fffb804 i8(i32)

0x0befca04 i32()
... ...

Compilation

SMM source
code

valid?

54



Control Flow Integrity (CFI): type-based veri�cation

We focus on indirect branches integrity

Type-based veri�cation
Ensures the integrity of indirect calls

typedef struct SomeStruct {

[...]

char (*foo)(int);

} SomeStruct;

int bar(SomeStruct *s) {

char c;

[...]

[SendMessage(1561, s->foo)]

c = s->foo(31); /* Call Site ID = 1561 */

[...]

}

Target RuntimeCompile time

Monitor
RuntimeCompile time

Message

Call Site ID 1561

Target
Address

0x0fffb804

Message
Instrumented

SMM code

Message

Call Site ID 1561

Target
Address

0x0fffb804

MessageCall Site ID Type

1561 i8(i32)

4852 i32(i8)
... ...

Function Address Type

0x0fffb804 i8(i32)

0x0befca04 i32()
... ...

Compilation

SMM source
code

valid?

54



Control Flow Integrity (CFI): type-based veri�cation

We focus on indirect branches integrity

Type-based veri�cation
Ensures the integrity of indirect calls

typedef struct SomeStruct {

[...]

char (*foo)(int);

} SomeStruct;

int bar(SomeStruct *s) {

char c;

[...]

[SendMessage(1561, s->foo)]

c = s->foo(31); /* Call Site ID = 1561 */

[...]

}

Target RuntimeCompile time

Monitor
RuntimeCompile time

Message

Call Site ID 1561

Target
Address

0x0fffb804

Message
Instrumented

SMM code

Message

Call Site ID 1561

Target
Address

0x0fffb804

MessageCall Site ID Type

1561 i8(i32)

4852 i32(i8)
... ...

Function Address Type

0x0fffb804 i8(i32)

0x0befca04 i32()
... ...

Compilation

SMM source
code

valid?

54



Control Flow Integrity (CFI): shadow call stack

Shadow call stack
Ensures integrity of the return address on the stack

Target RuntimeCompile time

Monitor
Runtime

Message

Return
Address

0x0f8a520c

MessageInstrumented
SMM code

Message

Return
Address

0x0f8a520c

Message...
0x0f8522d0

0x0f8a520c

Shadow call stack

valid?

Compilation

SMM source
code

pop

55



Number and size of equivalence classes for the type-based veri�cation

Our analysis with EDK II gave:

I 158 equivalence classes of size 1,
I 24 of size 2,
I 42 of size 3,
I 2 of size 5,
I 1 of size 9,
I and 1 of size 13.

56



Credits

I Slide 3, Google

I Slide 8, WikiChip https://en.wikichip.org/

I Slide 9, Instructor materials for ”Computer Organization and Design, RISC-V
Edition”, Patterson & Hennessy, 2018

I Slide 10, Rian J. Lang

I Slides 16, 20 icons made by Smashicons from www.flaticon.com

I Slides 17, 19, 15, 26 icons made by Freepik from www.flaticon.com

I Slide 15, icon made by monkik from www.flaticon.com

54

https://en.wikichip.org/
www.flaticon.com
www.flaticon.com
www.flaticon.com


Images Credits

Name Author License

Application Christopher CC BY 3.0 US
Chip Settings Luis Rodrigues CC BY 3.0 US
Gear Jonathan Higley CC0 1.0 Universal
Harddrive Creaticca Creative Agency CC BY 3.0 US
Microchip Creative Stall CC BY 3.0 US
Research Gregor Cresnar CC BY 3.0 US

55

https://thenounproject.com/term/application/1249006/
https://thenounproject.com/christopher20andreas/
https://creativecommons.org/licenses/by/3.0/us/
https://thenounproject.com/term/chip-settings/51255/
https://thenounproject.com/lmf.rodrigues/
https://creativecommons.org/licenses/by/3.0/us/
https://thenounproject.com/term/gear/5262/
https://thenounproject.com/jonathan/
https://creativecommons.org/publicdomain/zero/1.0/
https://thenounproject.com/term/harddrive/965822/
https://thenounproject.com/creaticca/
https://creativecommons.org/licenses/by/3.0/us/
https://thenounproject.com/term/microchip/147506/
https://thenounproject.com/creativestall/
https://creativecommons.org/licenses/by/3.0/us/
https://thenounproject.com/term/research/252623/
https://thenounproject.com/grega.cresnar/
https://creativecommons.org/licenses/by/3.0/us/

	Introduction
	Side-channel attacks on SGX
	Detection of Attacks Against the System Management Mode
	SILM Thematic Semester
	Conclusion

