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Why such complexity?

Performance summary

CPU time= Instructions
Program

× Clock cycles
Instruction

× Seconds
Clock cycle

How to increase the performances?
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Why do we need caches?

Latency
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Outline

1. Introduction

2. Side-channel attacks on SGX

3. Detection of Attacks Against the System Management Mode

4. SILM Thematic Semester

5. Conclusion
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Side-channel attacks on SGX



Side channels

I channels that are outside of the functional speci�cation, i.e., that are not
supposed to carry useful information

I however they can leak secret information, exploiting implementations
I can be performed by so�ware, e.g., measuring memory accesses

→ attacker monitors which cache lines are accessed, not the content
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Sandboxes vs Trusted Execution Environments (TEEs)

I sandboxes assume trusted system and untrusted
application

→ protects system from harm

→ e.g., JavaScript in the browser

I TEEs assume an untrusted system and a trusted
application

→ isolates the application

→ e.g., cloud, DRM, app that manipulates secrets...

16



Sandboxes vs Trusted Execution Environments (TEEs)

I sandboxes assume trusted system and untrusted
application

→ protects system from harm

→ e.g., JavaScript in the browser

I TEEs assume an untrusted system and a trusted
application

→ isolates the application

→ e.g., cloud, DRM, app that manipulates secrets...

16



Trusted Execution Environments

Threat model

I malicious OS
I only the CPU is trusted

→ TEE memory is encrypted→ inaccessible to the OS

Implementations

I Intel: SGX
I ARM and AMD: TrustZone
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What is SGX?
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Let’s go back to the threat model

Previous work showed that code inside an enclave
is not protected from side channels from outside

What if the enclave contains malicious code?
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SGX limitations

Classical exploits cannot be mounted within SGX:
I no syscalls
I no shared memory/libraries
I no interprocess communication
I blocked instructions
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Side-channel attacks on SGX (Schwarz et al. 2017)
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Prime+Probe (1/2)

I exploits timing di�erences
between:

– cached data (fast)
– uncached data (slow)

I targets a cache set
I works across CPU cores (shared LLC) 100 200 300 400
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Prime+Probe (2/2)

Victim address space Cache Attacker address space
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Prime+Probe (2/2)

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., �lls, the cache (no shared memory)
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Prime+Probe (2/2)

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., �lls, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data
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Prime+Probe (2/2)

Victim address space Cache Attacker address space
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Step 3: Attacker probes data to determine if set has been accessed

fast access
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Prime+Probe (2/2)

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., �lls, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed
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Attack on RSA square-and-multiply exponentiation (1/2)

mbedTLS version 2.3.0 (�xed since)

Algorithm 1: Square-and-multiply exponentiation
Input: base b, exponent e, modulus n
Output: be mod n
X← 1
for i← bitlen(e) downto 0 do

X←multiply(X,X)
if ei = 1 then

X←multiply(X,b)
end

end
return X
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Attack on RSA square-and-multiply exponentiation (2/2)

I raw Prime+Probe trace on the bu�er holding the multiplier b

I processed with a simple moving average
I allows to clearly recover the bits of the secret exponent

→ 96% of a 4096-bit RSA key from a single trace, full key using 11 traces
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Attack on RSA square-and-multiply exponentiation (2/2)

I raw Prime+Probe trace on the bu�er holding the multiplier b
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Timers

We need to di�erentiate between events a few
nanoseconds apart:
I rdtsc instruction does that very well
I unprivileged. . .

I . . . but not permitted inside SGX enclaves

Build your own timer!

I start a thread that continuously increments a global variable
I the global variable is our timestamp
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How about detection?

I OS cannot inspect the enclave: traditional methods fail

I performance counters can detect cache attacks→ high rate of cache misses
I however they are disabled inside the enclave
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Lessons learned

I hardware optimizations (e.g., cache) can create side channels to exploit
weak so�ware implementations

I SGX does not protect from side-channel attacks
→ enclaves are not a magic protection
→ Intel: ”this is not in the threat model”

I SGX can actually protect malware
→ security features can be abused too
→ rethink enclave protection?
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Detection of Attacks Against the
System Management Mode



Computers rely on �rmware

Where can we �nd �rmware?

I Hard disks, network cards, etc.
I Motherboards BIOS/UEFI

What is it?
I Low-level so�ware
I Tightly linked to hardware
I Stored into a dedicated �ash memory

Boot time vs Runtime

I Early execution and con�guration
I Highly privileged runtime so�ware

Hardware

UEFI
Firmware

Operating
System

Applications

Pr
iv

ile
ge

s

More

Less
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What is the problem?

BIOSs are o�en written in unsafe languages (i.e., C & assembly)

I Memory safety errors (e.g., use a�er free or bu�er over�ow)
I BIOSs are not exempt from vulnerabilities (Kallenberg et al. 2013; Bazhaniuk

et al. 2015)

Why compromise a BIOS?

I Malware can be hard to detect (stealth)
I Malware can be persistent (survives even if the HDD/SSD is changed)

What do we want?

I Boot time integrity
I Runtime integrity (some platforms are rarely rebooted)
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What are the currently used solutions?

Boot time

I Signed updates
I Signature veri�cation before executing
I Measurements and reporting to a TPM chip
I Immutable hardware root of trust

Immutable
Root of Trust

UEFI
Firmware

Bootloader

Operating
System

Signed
Updates

Verify
Measure &

Report

Runtime
Isolation of critical runtime services available while the OS is running:

I BIOS update, power management, UEFI variables handling, etc.

→ our focus is on the System Management Mode (SMM)
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Introducing the System Management Mode (SMM)

SMM is the highest privileged execution mode for x86 processors.

How to enter the SMM?

I Trigger a System Management Interrupt (SMI)
I SMIs code & data are stored in a protected memory region: System

Management RAM (SMRAM)

BIOS code is not exempt from vulnerabilities a�ecting SMM
(Bazhaniuk et al. 2015; Bulygin et al. 2017; Pujos 2016)

Why is it interesting for an attacker?

I Only mode that can write to the �ash containing the BIOS
I Arbitrary code execution in SMM gives full control of the platform

32



Our objective

Our goal is to detect attacks that modify the expected behavior of the SMM by
monitoring its behavior at runtime.

Monitor
Runtime
Firmware

Raise alert or
Stop execution or

...

Response

Behavior
Monitoring

Such goal raises the following questions:

I How to ensure the integrity of the monitor?
I How to de�ne a correct behavior?
I How to monitor?
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Approach overview (Chevalier et al. 2017)

Co-processor RAM Processor RAM

TargetMonitor

Unidirectional
FIFO

Co-processor Processor

Expected
target behavior

SMM code

How to ensure the
integrity of the monitor?

Semantic gap?
How to monitor?

bridging the semantic gap

LLVM-based
Compiler

SMM source
code

BIOS source code

How to de�ne a correct behavior?
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How to de�ne a correct behavior?

Our use case: SMM code

I Written in unsafe languages (i.e., C & assembly)
→ Such languages are o�en targeted by attacks hijacking the control �ow

I Tightly coupled to hardware
→ Such so�ware modi�es hardware con�guration registers

Control Flow Graph (CFG)
De�ne the control �ow that the so�ware is expected to follow

→ Control Flow Integrity (CFI)

Invariants on CPU registers
De�ne rules that registers are expected to satisfy

→ CPU registers integrity
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Control Flow Integrity (CFI): principle

Example
void auth(int a, int b) {

char buffer[512];

[...vuln...]

verification(buffer);

}

void verification(char *input) {

if (strcmp(input, "secret") == 0)

authenticated();

else

non_authenticated();

}

Simpli�ed graph

authveri�cation
Non

authenticated

Authenticated
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char buffer[512];

[...vuln...]

verification(buffer);

}

void verification(char *input) {

if (strcmp(input, "secret") == 0)

authenticated();

else

non_authenticated();

}

Simpli�ed graph

authveri�cation
Non

authenticated

Authenticated

Goal: constrain the execution path to follow a control-�ow graph (CFG)
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CPU registers integrity

SMM code is tightly coupled to hardware

I Generic detection methods (e.g., CFI) are not aware of hardware speci�cities
I Adhoc detection methods are needed

Some interesting registers for an attacker

I SMBASE: De�nes the SMM entry point
I CR3: Physical address of the page directory

→ Their value is saved in memory and is not supposed to change at runtime

How to protect such registers?

I Send the expected values at boot time
I Send current values at runtime to detect any discrepancy
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Communication channel constraints

Security constraints

I Message integrity
I Chronological order
I Exclusive access

Performance constraints

I Acceptable latency of an SMI as de�ned by Intel BIOS Test Suite: 150µs
I More than 150µs per SMI handler leads to degradation of performance or

user experience

38



Communication channel design

Additional hardware component

I Chronological order
→ FIFO

I Message integrity
→ Restricted FIFO

I Exclusive access
→ Check if CPU is in SMM (SMIACT# signal)

I Performance
→ Use a low latency interconnect

target

Restricted
FIFO

monitor

Co-processor

Processor

push
In SMM?

(SMIACT#)

pop
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Our experimental setup

Our prototype is implemented in a simulated and emulated environment

SMM code implementations used

I EDK2: foundation of many BIOSes (Apple, HP, Intel,...)
→ UEFI Variables SMI handlers

I coreboot: perform hardware initialization (used on some Chromebooks)
→ Hardware-speci�c SMI handlers

We want to emulate SMM environment and features
QEMU emulator for security evaluation

We want to simulate accurately the performance impact
gem5 simulator for performance evaluation
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Security evaluation

We simulated attacks that exploited vulnerabilities similar to those found in
real-world BIOSes

Vulnerability Attack Target Security Advisories Detected

Bu�er over�ow Return address CVE-2013-3582 Yes
Arbitrary write Function pointer CVE-2016-8103 Yes
Arbitrary write SMBASE LEN-4710 Yes
Insecure call Function pointer LEN-8324 Yes
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Running time overhead for SMI handlers

I Under the 150 microseconds limit de�ned by Intel
I Most of the communication overhead is due to the shadow call stack

EDK2
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Lessons learned

I SMM code can be vulnerable to memory errors
I Attackers exploiting such vulnerabilities can gain full control of the

platform

I We can detect such attacks using a behavior and event-based intrusion
detection system implemented on an isolated co-processor

I Acceptable performance (< 150µs Intel threshold)

I What can we do next?
– React and restore the platform in a sane state
– Implement other detection approaches to detect other classes of attacks (e.g

non-control data attacks)
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Cybersecurity thematic semesters

Objectives

I Promote the scienti�c, teaching and industrial transfer activities on a
speci�c subject

I Identify scienti�c and technological challenges in that �eld
I Propose a strategic action plan

Organization and funding
I Funded by the DGA
I Managed by Inria, on behalf of all the partners of the PEC research centre

(Pôle d’excellence cyber)
I Led by one or several researchers from PEC partners

https://semestres-cyber.inria.fr/en/
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SILM thematic semester

Actions

I Organization of di�erent events: a summer school, dedicated workshops
and a regular seminar

I Animation of a working group and publication of a white-paper
I Invitation of researchers

https://silm.inria.fr/
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Three complementary research areas

1. Analysing the behavior and state of hardware components
– Fuzzing
– Reverse-engineering
– Trace mechanisms
– Automated speci�cation analysis

2. Assessing the security of these hardware components
– Side-channel attacks
– Fault injection
– Exploiting unspeci�ed behaviors

3. Detecting or preventing so�ware attacks
– Using dedicated hardware components
– So�ware countermeasures against hardware vulnerabilities
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Organization team

G. Hiet
(CS/Inria, CIDRE)

Project coordinator, Workshops, Working Group & White Book

J.-L. Lanet C. Maurice F. Tronel R. Lashermes
(Inria LHS/CIDRE) (CNRS, EMSEC) (CS/Inria, CIDRE) (Inria)

Workshops Summer school Workshops, Summer
school

Seminar
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SILM Summer School of the GDR Sécurité Informatique

I 47 participants from 7 countries: students, young researchers and engineers
I Lectures, labs and CTF, over 4 days and a half
I Organizing committee: Clémentine Maurice, Frédéric Tronel
I Slides and videos of the presentations available on the web site

https://silm-school.inria.fr/
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SILM Workshop 2019

I November 20-21 2019 in Rennes, France during the European Cyber Week
I First session in common with C&ESAR conference
I 11 invited speakers + 1 paper accepted by C&ESAR conference
I Organizing committee: Guillaume Hiet, Frédéric Tronel, Jean-Louis Lanet
I Slides and videos of the presentations available on the web site

https://silm-workshop.inria.fr
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SILM Workshop 2020

I June 19, 2020 in Genova, Italy
I Workshop collocated with the 5th IEEE European Symposium on Security

and Privacy
I Invited speakers + CFP
I Organizing committee: Guillaume Hiet, Frédéric Tronel, Jean-Louis Lanet
I Submit articles!

https://silm-workshop-2020.inria.fr
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Seminar and Working Group

SILM Seminar

I One Friday/month, 2 presentations, at Inria in Rennes, France
I Organizing committee: Ronan Lashermes
I Slides and videos of the presentations available on the web site

https://semestres-cyber.inria.fr/en/silm-seminar/

Working group

I Objectives: review the state-of-the-art, identify scienti�c challenges,
technical obstacles, industrial transfer perspectives

I Managed by Guillaume Hiet
I Deliverables and outcomes: white paper + list of project proposals that

should be funded in priority
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Conclusion



Conclusion

Vulnerabilities on CPU micro-architectures and �rmware are a serious issue

I Be careful of the considered threat model
I O�en combined vulnerabilities in hardware (weak isolation) and so�ware

(use of vulnerable algorithms)

What can we do?

I Remove hardware optimization (HT, speculative execution, cache, etc.)?
– Implies a huge impact on performances!

I Patch vulnerable code
– How can we patch all the vulnerabilities? What about third parties?

I Propose generic solutions combining hardware and so�ware
– We need hardware support (same story as memory errors)
– Such mechanism has to be con�gured by so�ware (OS, application or compiler

support)
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Control Flow Integrity (CFI): type-based veri�cation

We focus on indirect branches integrity

Type-based veri�cation
Ensures the integrity of indirect calls

typedef struct SomeStruct {

[...]

char (*foo)(int);

} SomeStruct;

int bar(SomeStruct *s) {

char c;

[...]

c = s->foo(31);

[...]

}
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typedef struct SomeStruct {

[...]

char (*foo)(int);

} SomeStruct;

int bar(SomeStruct *s) {

char c;

[...]

c = s->foo(31);

[...]

}

Target RuntimeCompile time

Monitor
RuntimeCompile time

Message

Call Site ID 1561

Target
Address

0x0fffb804

Message
Instrumented

SMM code

Message

Call Site ID 1561

Target
Address
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MessageCall Site ID Type

1561 i8(i32)

4852 i32(i8)
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Function Address Type
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... ...

Compilation

SMM source
code

valid?

54



Control Flow Integrity (CFI): type-based veri�cation

We focus on indirect branches integrity

Type-based veri�cation
Ensures the integrity of indirect calls

typedef struct SomeStruct {

[...]

char (*foo)(int);

} SomeStruct;

int bar(SomeStruct *s) {

char c;

[...]

c = s->foo(31); /* Call Site ID = 1561 */

[...]

}

Target RuntimeCompile time

Monitor
RuntimeCompile time

Message

Call Site ID 1561

Target
Address

0x0fffb804

Message
Instrumented

SMM code

Message

Call Site ID 1561

Target
Address

0x0fffb804

MessageCall Site ID Type

1561 i8(i32)

4852 i32(i8)
... ...

Function Address Type

0x0fffb804 i8(i32)

0x0befca04 i32()
... ...

Compilation

SMM source
code

valid?

54



Control Flow Integrity (CFI): type-based veri�cation

We focus on indirect branches integrity

Type-based veri�cation
Ensures the integrity of indirect calls

typedef struct SomeStruct {

[...]

char (*foo)(int);

} SomeStruct;

int bar(SomeStruct *s) {

char c;

[...]

[SendMessage(1561, s->foo)]

c = s->foo(31); /* Call Site ID = 1561 */

[...]

}

Target RuntimeCompile time

Monitor
RuntimeCompile time

Message

Call Site ID 1561

Target
Address

0x0fffb804

Message
Instrumented

SMM code

Message

Call Site ID 1561

Target
Address

0x0fffb804

MessageCall Site ID Type

1561 i8(i32)

4852 i32(i8)
... ...

Function Address Type

0x0fffb804 i8(i32)

0x0befca04 i32()
... ...

Compilation

SMM source
code

valid?

54



Control Flow Integrity (CFI): type-based veri�cation

We focus on indirect branches integrity

Type-based veri�cation
Ensures the integrity of indirect calls

typedef struct SomeStruct {

[...]

char (*foo)(int);

} SomeStruct;

int bar(SomeStruct *s) {

char c;

[...]

[SendMessage(1561, s->foo)]

c = s->foo(31); /* Call Site ID = 1561 */

[...]

}

Target RuntimeCompile time

Monitor
RuntimeCompile time

Message

Call Site ID 1561

Target
Address

0x0fffb804

Message
Instrumented

SMM code

Message

Call Site ID 1561

Target
Address

0x0fffb804

MessageCall Site ID Type

1561 i8(i32)

4852 i32(i8)
... ...

Function Address Type

0x0fffb804 i8(i32)

0x0befca04 i32()
... ...

Compilation

SMM source
code

valid?

54



Control Flow Integrity (CFI): shadow call stack

Shadow call stack
Ensures integrity of the return address on the stack

Target RuntimeCompile time

Monitor
Runtime
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Return
Address
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MessageInstrumented
SMM code

Message

Return
Address

0x0f8a520c

Message...
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Shadow call stack

valid?

Compilation

SMM source
code

pop
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Number and size of equivalence classes for the type-based veri�cation

Our analysis with EDK II gave:

I 158 equivalence classes of size 1,
I 24 of size 2,
I 42 of size 3,
I 2 of size 5,
I 1 of size 9,
I and 1 of size 13.
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