HardBlare, a hardware/software co-design approach for
Information Flow Control

Guillaume Hiet and partners

February 18, 2020

. GBS L. UDS:

CentraleSupélec

,0——0\‘\

iETR @ IRISA <@

R 70
CIDRE research group ¢J Cominlabs |

11 permanent researchers, 3 Post-doc, 12 PhD students
https://team.inria.fr/cidre/

Attack comprehension
o Hardware attacks (side channel, fault injection)
o Malware analysis (Android & Windows)

Attack detection (anomaly-based intrusion detection)
o Low-level software (OS, firmware)

o Distributed systems (cloud, Industrial Control Systems, etc.)
o Detection of ransomware attacks

Attack resistance
o Formal methods for security
o Deceptive security

o Blockchain

https://team.inria.fr/cidre/

Security of Software/Hardware Interfaces €3 CominL)>>>

Low Level Components

! ! !

os

)

Hardware-based Security Mechanisms

o Rely on hardware mechanisms (e.g. CPU rings, SMM, etc.)

o Used by trusted software to protect from non-trusted code

G5 7\
Security of Software/Hardware Interfaces € Cominlabs |

Characteristics of HSM

o Security mechanisms implemented in hardware — more secure, lower
runtime overhead

o Complexe interactions with other software and hardware components
— potential vulnerabilities

Research Tracks

o Can we trust existing HSM (e.g. SMM, SGX, TrustZone, etc.)?
o SpecCert: Specifying and Verifying Hardware-based Security
Enforcement
o FreeSpec: Modular Verification of Components
o Can we propose new HSM?
o Collaboration with HP Labs: Co-processor-based Behavior Monitoring
of SMM Code

o HardBlare: an Efficient Hardware-assisted DIFC for Non-modified
Embedded Processors

TR, 7\
HardBlare project) Cominlabs) |

General information

o Started in October 2015. Duration: 3 years (some works are still
ongoing)
o Funding: 2 PhD students and 1 PostDoc

Partners

o CentraleSupélec, IETR (SCEE) @ Rennes
o Pascal Cotret (Ass. Prof.) now at ENSTA Bretagne
o Muhammad Abdul Wahab (PhD student) now R&D engineer at
Ultraflux
o CentraleSupélec/Inria, IRISA (CIDRE) @ Rennes
o Guillaume Hiet (Ass. Prof.)
o Mounir Nasr Allah (PhD student)
o UBS, Lab-STICC @ Lorient
o Guy Gogniat (Full Prof.), Vianney Lapétre (Ass. Prof.)
o Arnab Kumar Biswas (Postdoc) now research Fellow at NUS

TR LA
¢J Cominlabs |
o The best strategy would be to avoid vulnerabilities

Indeed many preventive approaches have been proposed
> Static analysis of software code
» Dynamic verification enforced by the runtime environment
» Cryptography, etc.
> In practice
» Preventive approaches are not systematically used (e.g. a lot of

software are still using C)
> They are not sufficient to prevent all the attacks (e.g. using Java or

OCaml does not prevent logical errors)
o It is also important to monitor systems to detect intrusions at
runtime
o Detecting attacks or intrusions is just the first step of reactive security
and alerts could be used to
o Notice security incidents to administrators

> Stop or modify execution
» Put the system in quarantine, etc.

How to secure embedded systems?

i i i TR . ///\ N \
Dynamic Information Flow Tracking ¢y Cominlabs) |
Motivation

A generic approach to detect attacks against confidentiality and integrity at
different levels

DIFT principle

o We attach labels called tags to containers and specify an information
flow policy, i.e. relations between tags

o At runtime, we propagate tags to reflect information flows that occur
and detect any policy violation

Public channel

Password.tw "

A VAR
C3
welcome.html

Secure channel

Laveny

> 72\
Different levels of DIFT ¢J Cominlabs |

Coarse-grained approach: OS level

o Monitor system calls: containers = files, memory pages
o Pros & cons

+ Monitor in kernel side protected from userland

+ Tagging files is easier for the end user to specify its security policy
+ Low runtime overhead

- Over-approximation of application internal behavior

- Cannot detect low-level attacks

Fine-grained approach: machine language level

o Monitor instruction execution: containers = registers, memory words
o Pros & cons

+ Precise monitoring
- Huge overhead and no isolation if implemented in software
- Cannot tag persistent storage (files) if implemented in hardware

o o . & 2\ . 772\ \
Originality of our approach 'y Cominlabs |
/
o Combines hardware/software fine-grained DIFT with OS-level
tagging to associate labels to registers, memory and files
o Helps the end-user to specify the security policy
o Saves the security contexts between reboots

Implements tag propagation in an external co-processor to isolate
the monitor with no modification of the main CPU

o Main challenge: isolating the monitor in a dedicated co-processor
creates a semantic gap between the monitor and the monitored
system:

How can the isolated co-processor extract some information from the
main CPU to infer the behavior of the monitored code?

o Solve the semantic-gap issue by an original combination of
approaches:
pre-computing of annotations during the compilation of applications
» sending of branching information using hardware trace mechanisms
> sending of addresses of read/write accesses using instrumentation of
the application code

P 7\
Threat model J Cominlabs) |

> We target software attacks that directly modify the values of
containers (files, registers, memory)

We do no handle physical attacks (e.g. fault injection using laser or
physical side channel attacks)
o We only monitor applications
> The OS kernel is part of our TCB

o We could reduce the TCB to the kernel code that manages file tags
and communicates with the co-processor

i i TR . 72\ ‘
Use case and technological choices ¢y Cominlabs) |
Use case

o Embedded systems using rich OS in security critical contexts
o Such systems cannot be redeveloped from scratch for economical

reasons
o Security concerns allow important modifications of existing systems if
some level of compatibility with applications and drivers is achieved

Software technological choices

o Linux embedded systems compiled with LLVM using Yocto

o Open-source: implementation and evaluation of our approach
o Very popular in embedded systems and simpler than Android

Hardware technological choices
o Digilent ZedBoard using Xilinx ZYNQ SoC
o Combine two hardcores (ARM Cortex A9) with an FPGA

PTM Traces ﬁ CominL)>>>

CPU Cortex-A9 DIFT Monitor
DIFT Core

Traces T

PTM || (basic block addresses)
PFT Decoder

=

PTM Traces &y Cominl_‘GES) w

L4ven S

int main() {
int file_public, file_secret, file_output;
char public_buffer[1024]; ? .. bl <open> ...
char secret_buffer[1024];
char *temporary_buffer; +
file_public = open("files/public.txt",O_RDONLY);
file_secret = open("files/secret.txt",O_RDONLY); bl <rand>
file_output = open("files/output.txt",O_WRONLY); cmp r0, #0
read(file_public, public_buffer, 1024); bne <main+0x148>
read(file_secret, secret_buffer, 1024);

if((rand() % 2) == 0){
temporary_buffer = public_buffer;
}
else{
temporary_buffer = secret_buffer;

... bl <write> ...

write(file_output, temporary_buffer, 1024);
return 0;

PTMtrace : {@): ; ©: O}

: . & Y=\
Static Analysis Cominlabs)| |

Problem
We need to know what's happened between two jumps

Solution
During compilation we also generate annotations that will be executed by
the co-processor to propagate tags

PHDR
7 LR
[INTERP N s t
[| T iAaas egments
Examples : - —— B e W
\ _hardblare_info ~ | X
add r0, r1, r2 = r0 <+ riUr2 Ny e
y) |
and r3,r4, r5 = r3 <« r4Urb o 4

.data

e

.interp

Static Analysis @ Cominlabs |

CPU Cortex-A9 DIFT Monitor
DIFT Core [

Traces T
PTM || (basic block addresses) [‘

W PFT Decoder

’ Tag Register File

[I
User application Annotations | | Memory tags

System RAM

Source code >

Instrumentation

P 7\
J Cominlabs) |

Problem

Some addresses are resolved/calculated at run-time

Solution
o Instrument the code during the last phase of the compilation process
o The register r9 is dedicated for the instrumentation

o The instrumentation FIFO address is retrieved via a UIO Driver

Examples :

str r2, [r9]
ldr r0, [r2]
str r5, [r9]
str r3, [r5]

1ldr r0, [r2] =

str r3, [r4] =

e
S

Instrumentation: different strategies

CominL)>>>

Recover memory addresses

Instruction Annotation
Idr r1, [r2, #4] rl « mem (r2 + 4)

Two possible strategies

@ Strategy 1: Recover all memory address through instrumentation

@ Strategy 2: Recover only register-relative memory address through
instrumentation

Instrumentation strategy 2

TR, LA
@ Cominlalbs |

Recover only register-relative memory address through instrumentation

Example Instructions | Annotations Memory address
recovery

sub r0, rl, r2 r0=1rl1+ r2

mov r3, r0 r3 =10

str ri1, [PC, #4] OMem(PC+4) =r1 CoreSight PTM

ldr r3, [SP, #-8] r3 = @Mem(SP-8) Static analysis

str rl, [r3, r2] OMem(r3+r2) =ri1 instrumented

. e =\
Instrumentation @ Cominlals) |

CPU Cortex-A9 DIFT Monitor

Instrumentation DIFT Core [

(load/store adresses)
P Instrumentation FIFOF

Traces T
PTM || (basic block addresses) [‘

W PFT Decoder

’ Tag Register File

[I
User application Annotations | | Memory tags

System RAM

Source code >

TR, 7725\
RfBLare: handling system calls & Cominlabs |

Problems
o We want to transmit tags from/to the operating system

o We want to persistently store tags in the system

Solutions
o Intercept syscalls using Linux Security Modules Hooks
o Attach labels to files in Extended file attributes

o The OS communicates with the co-processor to propagate tags:

o When reading data from a file: tag(file) — tag(buffer)
o When writing data to a file: tag(buffer) — tag(file)

RfBLare: System calls @ Cominlabs |

HardDrive (file system with extended attributes) passwd txty ‘index. html
Tag: ‘ Tag:

y

Linux Kernel with information flow support (RfBlare)

A A
tag(file) — tag(memory)
System calls tag(mefory) — tag(file)
¢ v
CPU Cortex-A9] DIFT Monitor
Instrumentation DIFT Core H
(load/store adresses)
P Instrumentation FIFO
Traces T
PTM | | (basic block addresses) [‘
W PFT Decoder ’ Tag Register File

User application Annotations | | Memory tags

System RAM

Source code

Software developments

TR, Y\
@ Cominlalbs |
Software

o Modification of the Linux kernel:

o LSM module to handle file tags

o Communication with the co-processor
Patch of the official Linux kernel PTM driver

o Initial support of the ARM PTM trace mechanism was incomplete
o The patch has been accepted by kernel maintainers 2

(#]

o Modification of the Linux loader (1d.so) to load annotations
Development of a LLVM backend pass

o Compute annotations and save them in the elf binary file
o Instrument application code to send read/write addresses

(®

o All the software code is available on private project git repo

o Access can be granted on demand
o Will be published on public repo after the integration process

“https://lore.kernel.org/patchwork/patch/723740/

https://lore.kernel.org/patchwork/patch/723740/

o5 22NN
) Cominllos I

|
!

1

DIFT coprocessor

Two cores
o Dispatcher
o TMC (Tag Management Core)

BRAM
Decoded 1) 2 Tag
trace » < .
annotations
memory
3 TagRR T1,T2 DDR
v
Annotations .| Tag Management Core | | . Tag
memory g (TMC) 1 | memory
EEAM DIFT Coprocessor DR

'reconfig_18.

Cominlobs |

Use cases: Multiple security policies

BRAM
Tag
memory
DDR
TagRR T1,T2
Decoded
Tag
trace it
memory annotations
TagRR T1,T2 —=
Tag
memory

DDR

Conclusion

TR, LA
@ Cominlalbs |

Contributions
o Recovery of required information for DIFT on hardcore CPU
o Dedicated DIFT coprocessor for the ARM architecture
o Integration of OS support in the hardware-assisted DIFT
o Implementation of the proposed approach on the Zynq SoC

Scalable solution for multiple security policies and
multicore/multiprocessor systems

Perspectives
o Finalizing hardware integration and security evaluation

o Reducing the TCB, implementing isolation of kernel parts using
TrustZone

o Reducing instrumentation overhead (by optimizing the static analysis)

	Context and motivations
	General presentation of the project
	Software approach
	Hardware approach

