
So�ware side-channel attacks and fault attacks
on ARM devices

Clémentine Maurice, CNRS, IRISA, EMSEC
February 18, 2020–SILM seminar, Rennes, France



So�ware-based side channels and fault attacks

• power consumption, electromagnetic leaks, lasers, glitching. . .

→ targeted attacks, physical access
→ mostly performed on embedded devices

• timing attacks, microarchitectural attacks, so�ware-based fault attacks. . .

→ no physical access required
→ require code co-location

2



So�ware-based side channels and fault attacks

• power consumption, electromagnetic leaks, lasers, glitching. . .

→ targeted attacks, physical access
→ mostly performed on embedded devices

• timing attacks, microarchitectural attacks, so�ware-based fault attacks. . .

→ no physical access required
→ require code co-location

2



So�ware-based side channels and fault attacks

• power consumption, electromagnetic leaks, lasers, glitching. . .
→ targeted attacks, physical access
→ mostly performed on embedded devices

• timing attacks, microarchitectural attacks, so�ware-based fault attacks. . .

→ no physical access required
→ require code co-location

2



So�ware-based side channels and fault attacks

• power consumption, electromagnetic leaks, lasers, glitching. . .
→ targeted attacks, physical access
→ mostly performed on embedded devices

• timing attacks, microarchitectural attacks, so�ware-based fault attacks. . .

→ no physical access required
→ require code co-location

2



So�ware-based side channels and fault attacks

• power consumption, electromagnetic leaks, lasers, glitching. . .
→ targeted attacks, physical access
→ mostly performed on embedded devices

• timing attacks, microarchitectural attacks, so�ware-based fault attacks. . .
→ no physical access required
→ require code co-location

2



Side-channel attacks



Cache attacks

• cache attacks → exploit timing di�erences of memory accesses

• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so
• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes

• di�erent techniques can be used for both covert channels and side-channel
attacks

3



Cache attacks

• cache attacks → exploit timing di�erences of memory accesses
• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other
• not allowed to do so

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes

• di�erent techniques can be used for both covert channels and side-channel
attacks

3



Cache attacks

• cache attacks → exploit timing di�erences of memory accesses
• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes

• di�erent techniques can be used for both covert channels and side-channel
attacks

3



Cache attacks

• cache attacks → exploit timing di�erences of memory accesses
• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so
• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes

• di�erent techniques can be used for both covert channels and side-channel
attacks

3



Cache attacks

• cache attacks → exploit timing di�erences of memory accesses
• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so
• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes

• di�erent techniques can be used for both covert channels and side-channel
attacks

3



Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

4



Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

cached cached

4



Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

�ushes

Step 2: Attacker �ushes the shared cache line

4



Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker �ushes the shared cache line

loads data

Step 3: Victim loads the data

4



Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker �ushes the shared cache line

Step 3: Victim loads the data

reloads data

Step 4: Attacker reloads the data 4



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

5



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., �lls, the cache (no shared memory)

5



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., �lls, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

5



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., �lls, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

5



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., �lls, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

fast access

5



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., �lls, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

slow access

5



A bit of history

• 2005: �rst cache attacks on Intel
• 2013: �rst cache attack on Android (ARM)

→ attack requires privileges

• 2016: �rst unprivileged cache attack on ARM

Even today most attacks target Intel

C. Percival. “Cache missing for fun and pro�t”. In: Proceedings of BSDCan. 2005.
R. Spreitzer et al. “On the Applicability of Time-Driven Cache Attacks on Mobile Devices”. In: NSS. 2013.
M. Lipp et al. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016.

6



Intel vs ARM

Challenge #1 no �ush instruction on ARMv7-A
→ use cache eviction

Challenge #2 pseudo-random replacement policy
→ eviction strategies that use multiple accesses

Challenge #3 privileged cycle counter
→ thread counter (nano-second resolution)

Challenge #4 non-inclusive caches
→ abuse cache coherency protocol for shared memory

Challenge #5 no shared cache between multiple CPUs (big.LITTLE)
→ abuse cache coherency protocol for shared memory

M. Lipp et al. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016.

7



Intel vs ARM

Challenge #1 no �ush instruction on ARMv7-A
→ use cache eviction

Challenge #2 pseudo-random replacement policy
→ eviction strategies that use multiple accesses

Challenge #3 privileged cycle counter
→ thread counter (nano-second resolution)

Challenge #4 non-inclusive caches
→ abuse cache coherency protocol for shared memory

Challenge #5 no shared cache between multiple CPUs (big.LITTLE)
→ abuse cache coherency protocol for shared memory

M. Lipp et al. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016.

7



Intel vs ARM

Challenge #1 no �ush instruction on ARMv7-A
→ use cache eviction

Challenge #2 pseudo-random replacement policy
→ eviction strategies that use multiple accesses

Challenge #3 privileged cycle counter
→ thread counter (nano-second resolution)

Challenge #4 non-inclusive caches
→ abuse cache coherency protocol for shared memory

Challenge #5 no shared cache between multiple CPUs (big.LITTLE)
→ abuse cache coherency protocol for shared memory

M. Lipp et al. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016.

7



Intel vs ARM

Challenge #1 no �ush instruction on ARMv7-A
→ use cache eviction

Challenge #2 pseudo-random replacement policy
→ eviction strategies that use multiple accesses

Challenge #3 privileged cycle counter
→ thread counter (nano-second resolution)

Challenge #4 non-inclusive caches
→ abuse cache coherency protocol for shared memory

Challenge #5 no shared cache between multiple CPUs (big.LITTLE)
→ abuse cache coherency protocol for shared memory

M. Lipp et al. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016.

7



Intel vs ARM

Challenge #1 no �ush instruction on ARMv7-A
→ use cache eviction

Challenge #2 pseudo-random replacement policy
→ eviction strategies that use multiple accesses

Challenge #3 privileged cycle counter
→ thread counter (nano-second resolution)

Challenge #4 non-inclusive caches
→ abuse cache coherency protocol for shared memory

Challenge #5 no shared cache between multiple CPUs (big.LITTLE)
→ abuse cache coherency protocol for shared memory

M. Lipp et al. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016.

7



Threat model

• people tend to use their browser for everything on personal computers

• people tend to install a new app for everything on mobile devices
• apps on mobile devices have speci�c permissions

→ covert channels make a lot of sense in this context!
→ e.g., one app transmitting covertly contact information to another app that

does not have the permission

https://techcrunch.com/2017/05/04/report-smartphone-owners-are-using-9-apps-per-day-30-per-month/

8

https://techcrunch.com/2017/05/04/report-smartphone-owners-are-using-9-apps-per-day-30-per-month/


Threat model

• people tend to use their browser for everything on personal computers
• people tend to install a new app for everything on mobile devices

• apps on mobile devices have speci�c permissions
→ covert channels make a lot of sense in this context!
→ e.g., one app transmitting covertly contact information to another app that

does not have the permission

https://techcrunch.com/2017/05/04/report-smartphone-owners-are-using-9-apps-per-day-30-per-month/

8

https://techcrunch.com/2017/05/04/report-smartphone-owners-are-using-9-apps-per-day-30-per-month/


Threat model

• people tend to use their browser for everything on personal computers
• people tend to install a new app for everything on mobile devices
• apps on mobile devices have speci�c permissions

→ covert channels make a lot of sense in this context!
→ e.g., one app transmitting covertly contact information to another app that

does not have the permission

https://techcrunch.com/2017/05/04/report-smartphone-owners-are-using-9-apps-per-day-30-per-month/

8

https://techcrunch.com/2017/05/04/report-smartphone-owners-are-using-9-apps-per-day-30-per-month/


Threat model

• people tend to use their browser for everything on personal computers
• people tend to install a new app for everything on mobile devices
• apps on mobile devices have speci�c permissions

→ covert channels make a lot of sense in this context!

→ e.g., one app transmitting covertly contact information to another app that
does not have the permission

https://techcrunch.com/2017/05/04/report-smartphone-owners-are-using-9-apps-per-day-30-per-month/

8

https://techcrunch.com/2017/05/04/report-smartphone-owners-are-using-9-apps-per-day-30-per-month/


Threat model

• people tend to use their browser for everything on personal computers
• people tend to install a new app for everything on mobile devices
• apps on mobile devices have speci�c permissions

→ covert channels make a lot of sense in this context!
→ e.g., one app transmitting covertly contact information to another app that

does not have the permission

https://techcrunch.com/2017/05/04/report-smartphone-owners-are-using-9-apps-per-day-30-per-month/

8

https://techcrunch.com/2017/05/04/report-smartphone-owners-are-using-9-apps-per-day-30-per-month/


Covert channels

• Flush+Reload, Evict+Reload and Flush+Flush, cross-core and cross-CPU
• faster than non-microarchitectural techniques

Work Type Bandwidth [bps] Error rate

Schlegel et al. Vibration settings 87 –
Schlegel et al. Volume settings 150 –
Schlegel et al. File locks 685 –
Marforio et al. UNIX socket discovery 2 600 –
Marforio et al. Type of Intents 4 300 –
Ours (OnePlus One) Evict+Reload, cross-core 12 537 5.00%
Ours (Alcatel One Touch Pop 2) Evict+Reload, cross-core 13 618 3.79%
Ours (Samsung Galaxy S6) Flush+Flush, cross-core 178 292 0.48%
Ours (Samsung Galaxy S6) Flush+Reload, cross-CPU 257 509 1.83%
Ours (Samsung Galaxy S6) Flush+Reload, cross-core 1 140 650 1.10%

9



A note on Meltdown

C. Canella et al. “A Systematic Evaluation of Transient Execution Attacks and Defenses”. In: USENIX Security. 2019.

10



A note on Spectre

C. Canella et al. “A Systematic Evaluation of Transient Execution Attacks and Defenses”. In: USENIX Security. 2019.

11



So�ware-based fault attacks



DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

12



DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

12



DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

12



DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

12



DRAM organization

chip
bank 0

row 0
row 1
row 2

. . .
row 32767

row bu�er

• bits in cells in rows
• access: activate row,

copy to row bu�er

13



Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door
until the vibrations open the door you were a�er” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

Y. Kim et al. “Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors”. In: ISCA’14. 2014.

14



Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door
until the vibrations open the door you were a�er” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

activate

row bu�er

copy

Y. Kim et al. “Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors”. In: ISCA’14. 2014.

14



Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door
until the vibrations open the door you were a�er” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

activate

row bu�er

copy

Y. Kim et al. “Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors”. In: ISCA’14. 2014.

14



Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door
until the vibrations open the door you were a�er” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

activate

row bu�er

copy

Y. Kim et al. “Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors”. In: ISCA’14. 2014.

14



Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door
until the vibrations open the door you were a�er” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

activate

row bu�er

copy

Y. Kim et al. “Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors”. In: ISCA’14. 2014.

14



Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door
until the vibrations open the door you were a�er” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�errow bu�er

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit �ips in row 2!

Y. Kim et al. “Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors”. In: ISCA’14. 2014.

14



Impact of the CPU cache

CPU
core

CPU
cache

DRAM

• only non-cached accesses reach DRAM
• original attacks use clflush instruction

→ �ush line from cache
→ next access will be served from DRAM

15



How to reach DRAM (x86 and ARM)?

1. clflush instruction → original paper (Kim et al.)

2. non-temporal accesses (Qiao et al.)

3. cache eviction → Prime+Probe (Gruss et al., Aweke et al., Frigo et al.)

4. uncached memory (van der Veen et al.)

Y. Kim et al. “Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors”. In: ISCA’14. 2014.
D. Gruss et al. “Rowhammer.js: A Remote So�ware-Induced Fault Attack in JavaScript”. In: DIMVA’16. 2016.
Z. B. Aweke et al. “ANVIL: So�ware-based protection against next-generation rowhammer attacks”. In: ACM SIGPLAN Notices 51.4 (2016), pp. 743–755.
P. Frigo et al. “Grand Pwning Unit: Accelerating Microarchitectural Attacks with the GPU”. In: S&P. 2018.
R. Qiao et al. “A new approach for rowhammer attacks”. In: HOST 2016. 2016.
V. van der Veen et al. “Drammer: Deterministic Rowhammer Attacks on Mobile Platforms”. In: CCS. 2016.

16



What works on ARM?

1. ARMv7 �ush instruction is privileged 7

2. ARMv8 non-temporal stores are still cached in practice 7

3. cache eviction seems to be too slow, except when using GPUs
→ also works in browsers using WebGL 3

4. apps can use /dev/ion for uncached, physically contiguous memory,
without any privilege or permission needed (since Android 4.0) 3

17



Conclusion



Conclusion

• some di�erences in techniques used for side-channel attacks and fault
attacks on x86 and ARM. . .

• . . . but nothing fundamentally di�erent
• attacks based on optimizations
• how to get rid of the attacks while keeping the optimizations?

18


	Side-channel attacks
	Software-based fault attacks
	Conclusion

