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Cache timing attacks against cryptographic implementations

- Common side-channel: cache timing attacks

» Exploit the latency between cache hits and misses

» Attackers can recover cryptographic keys — 1 | I | | [r w '},,
+ Tromer et al (2010), Gullasch et al (2011) show o i | | | 'L | LG AN :
efficient attacks on AES implementations s e LA
- Based on the use of look-up tables

» Access to memory addresses that depend on
the key



Constant-time programming
A programming discipline for crypto programmers

» Constant-time programs should not if (secret)
- branch on secrets then dol()
else doz() not constant-time
» perform memory accesses that depend on secrets

» This is a strictly stronger property than
« time execution does not depend on secrets » !

 There are constant-time implementations of many
cryptographic algorithms: AES, DES, RSA, etc

al[secret] = ..

not constant-time



Cryptographic constant-time verification

» Several verification tools have been built and used for checking that popular
libraries are constant-time [Almeidal16, Rodrigues16]

» But checking low-level implementations is not ideal
* it makes the analysis work harder (e.g. alias analysis)
* It makes the results of the analysis difficult to understand for programmers
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Cryptographic constant-time verification

@
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- In [ESORICS’17] we provide a verification tool at C S Bl D Pinardie A T '
. Blazy, D. Pichardie, A. Trieu.

source Ievel Verifying Constant-Time Implementations by Abstract Interpretation.

ESORICS 2017 & Journal of Computer Security 2019.

* It tracks taints in memory and checks the

constant-time property &
* it is based on the Verasco C abstract interpreter o e o o Doy, X. Leroy, and D Fichardie.
[POPL’-I 5] POPL'15.
),
* In thIS Work [POPL 20] G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte, D. Pichardie, A. Trieu.
] Formal verification of a constant-time preserving C compiler.
- we prove the CompCert compiler preserves the POPL'20

constant-time property

Vp, ConstantTime(p) = ConstantTime(compile(p))




Verified Compilation

* Proving semantic properties on non-toy compilers requires a machine-checked proof

» CompCert [Leroy06] is a milestone in this area

- a moderately optimizing compiler for C

» programmed and verified with the Coq proof assistant

* now being used in commercial settings and for software certification [Kastner18]

« CompCert theorems show

* It preserves memory safety

* It preserves observable behaviors

* but they says nothing about side channels attacks ?



This work

» Makes precise what secure compilation means for cryptographic constant-time

» Provides a machine checked-proof that a mildly modified version of the CompCert
compiler preserves cryptographic constant-time

» Explains how to turn a pre-exisiting formally-verified compiler into a formally-
verified secure compiler

* Provides a proof toolkit for proving security preservation with simulation diagrams



Some background on CompCert



Background: verifying a compiler

CompCert, a moderately optimizing C compiler usable for critical embedded software

= compiler + proof that the compiler does not introduce bugs

Using the Coq proof assistant, X. Leroy proves the following semantic preservation
property:

For all source programs S and compiler-generated code C, if
the compiler generates machine code C from source S,
without reporting a compilation error,
then «C behaves like S».

Compiler written from scratch, along with its proof; not trying to prove an existing
compiler

10



Compcert meets the industrial world

Fly-by-wire software, for recent Airbus planes

- control-command code generated from block diagrams WeET
(3600 files, 3.96 MB of assembly code)

* minimalistic OS -

Results
» Estimated WCET for each file
» Average improvement per file: 14% e a——
» Compiled with CompCert 2.3, May 2014

Conformance to the certification process (DO-178)
» Trade-off between traceabllity guarantees and efficiency of the generated code

11



@ absint.com ¢

ﬁ Absint Products Support News About us Contact Search

_ CompCert How it works New in 19.10 Try now

Formally verified compilation

CompCert is a formally verified optimizing C compiler. Its intended use is compiling safety-critical and mission-critical
software written in C and meeting high levels of assurance. It accepts most of the ISO C 99 language, with some
exceptions and a few extensions. It produces machine code for ARM, PowerPC, x86, and RISC-V architectures.

Fly_ by_Wi re SOftwa _ What sets CompCert apart?

CompCert is the only production compiler that is formally verified, using machine-assisted mathematical proofs, to be Estimated WCET
exempt from miscompilation issues. The code it produces is proved to behave exactly as specified by the semanticsof .. [~~~ ~~ -~~~ ~—~

* control-comma WCET

This level of confidence in the correctness of the compilation process is unprecedented and contributes to meeting
(3 6 O O f- I 3 9 6 the highest levels of software assurance. ,_/' \.\
les, 3. PV
; s - _

Faser =~ —~— —~— Programmed
e T i __ 8 ”

- minimalistic OS b =

/" Program rarsns ocatce | cton s — 8~ amecra e ted Programmed and
- | provedin Coq
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Execution time
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R eS u I'tS The formal proof covers all transformations from the abstract syntax tree to the generated assembly code. To

“The striking thing about our CompCert results is that the middle-end bugs we found in all other compilers are

absent. As of early 2011, the under-development version of CompCert is the only compiler we have tested for which G w

preprocess and produce object and executable files, an external C preprocessor, assemblers, linkers, and C libraries
| |
» Estimated WCE
Csmith cannot find wrong-code errors. This is not for lack of trying: we have devoted about six CPU-years to the task.

have to be used. However, these unverified stages are well-understood and robust from an implementation
perspective. This was demonstrated on a development version of CompCert in a 2011 study by Regehr, Yang et al.: o AT (Compeer
. RS b
® Ave ra e I I I l p rOV - The apparent unbreakability of CompCert supports a strong argument that developing compiler optimizations within prmaevep o gkl
3 o . . - T L e e
- . a proof framework, where safety checks are explicit and machine-checked, has tangible benefits for compiler users.” y '

° C O m p i I ed W it h . Formally verified optimizations

CompCert implements the following optimizations, all of them formally verified:

» Register allocation using graph coloring and iterated register coalescing

« Instruction selection with strength reduction, to take advantage of combined instructions provided by the target
architectures

C O n fo r m a n C e . « Constant propagation for integer and floating-point types

dlettEage Witps://www.absint.com/compcert/ Skt

— The Institute of Flight System Dynamics at the Technical University of Munich uses CompCert in the


https://www.absint.com/compcert/

CompCert: 1 compiler, 11 languages...

side-effect out | type elirﬂnation
of expressions , oop simplifications _
CompCertCJ p—> Clight J AL C#minor J
Optimizations: constant prop., CSE, tail calls, stack allocation
Q (LCM), (software pipelining) of «&»variables
CFG construction instruction
e . . lecti .

RTL J(w CminorSel J& Cminor J
register (instruction scheduling)
allocation (IRC) Q

linearization SFﬁ'”'”Q, reloacslng
calling conventions
J of the CFG LTLin J g Linear J
layout of
stack frames

asm code
eneration
J g Mach J

12



CompCert: 1 compiler, 11 languages...

We [imit our work on

CompCert verification tools

deterministic semantics Jourdan15,Blazy19]

type elimination work here anyway

loop simplifications
Clight J PoP C#minor
Optimizations: constant prop., CSE, tail calls, stack allocation
Q (LCM), (software pipelining) of «&»variables
CFG construction instruction
e . . lecti .

RTL J(w CminorSel J& Cminor J
register (instruction scheduling)
allocation (IRC) ( )

linearization SFﬁ'”'”Q, reloacslng
calling conventions
J of the CFG LTLin J g Linear J
layout of
stack frames

asm code
eneration
J g Mach J
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CompCert: ... and 17 preservations proofs

Compiler pass Explanation on the pass

Cshmgen Type elaboration, simplification of control
Cminorgen Stack allocation

Selection Recognition of operators and addr. modes
RTLgen Generation of CFG and 3-address code
Tailcall Tailcall recognition

Inlining Function inlining

Renumber Renumbering CFG nodes

ConstProp Constant propagation

CSE Common subexpression elimination
Deadcode Redundancy elimination

Allocation Register allocation

Tunneling Branch tunneling

Linearize Linearization of CFG

CleanuplLabels Removal of unreferenced labels
Debugvar Synthesis of debugging information
Stacking Laying out stack frames

Asmgen Emission of assembly code

13



CompCert preservation proof methodology

- Each langage iIs given an that models a small step
transition from a state § to a state s’ by emitting a trace of external events .

* From this stems a notion of (event trace) for complete (possibly
infinite) executions.

- Behavior preservation is proved via backward and forward simulation, but thanks to
langage determinism, IS enough.

14
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CompCert preservation proof methodology

- Each langage iIs given an that models a small step
transition from a state § to a state s’ by emitting a trace of external events .

* From this stems a notion of (event trace) for complete (possibly
infinite) executions.

» Behavior preservation is proved via backward and forward simulation, but thanks to

langage determinism, IS enough.
source state [ . S, 3 { . S,
I z } Q C witht=¢
simulation relation : R or ~

and m(s,) < m(s;)

4
> O Oq
target state 2 1 well founded measure

14



Verified Static Analysis meets CompCert



The verified C static analyzer Verasco [POPL 15]

Goal: develop and verify in Coq a realistic static analyzer by
abstract interpretation

- language analyzed: the CompCert subset of C e sl s
» nontrivial abstract domains, including relational domains 0 D e et feliow
» modular architecture inspired from Astree’s Mermory & alus domain
 to prove the absence of undefined behaviors in C source 2 int )
programs e %*>®\ "
D S -
Slogan: integer congruences | Integer & FR intervals

Verasco architecture

» if « CompCert = 1/10th of GCC but formally verified »,
» likewise « Verasco =~1/10th of Astrée but formally verified »



Defining Cryptographic Constant-Time Preservation



Cryptographic constant-time property: defining leakages

» We enrich the CompCert traces of events with of two types
* either the truth value of a condition,
» Or a pointer representing the address of
» either a memory access (i.e., a load or a store)

« or a called function

: 4
- Using from s — s’ we can extract

- the compile-only judgment s —t>COmp s’

- the leak-only judgment s —t>leak s’

Is defined as the behavior of the — g5k S€mMantics

18



Cryptographic constant-time property: preservation

- We note ¢(s, s') the fact that two initial states s and s’ share the same values for
public inputs, but may differ on the values of secret inputs

- A program is if for two initial states s and s’ such

that @(s, s’) holds, then both leak-only executions starting from s and s’ observe the
same leakage

implies 7 =1
>>I<
leak

19



Cryptographic constant-time property: preservation

- We note ¢(s, s') the fact that two initial states s and s’ share the same values for
public inputs, but may differ on the values of secret inputs

- A program is if for two initial states s and s’ such

that @(s, s’) holds, then both leak-only executions starting from s and s’ observe the
same leakage

é
L et P be a safe

Clight source program that is compiled into an x86 assembly program P’.
If P is constant-time w.r.t. ¢, then so is P".

19



Proving Cryptographic Constant-Time Preservation



Proving cryptograpnic constant-time preservation
A proof engineering perspective

» Cryptographic constant-time preservation is a property about the leak-only
semantics —|agk

» But existing CompCert simulation diagrams deal with the compile-only semantics
—Ccomp

 Our proof engineering strategy is to benefit as much as possible from the
of these diagrams

21
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A proof engineering perspective

 Cryptographic constant-time preservation is a property about the leak-only
semantics —|ggk

» But existing CompCert simulation diagrams deal with the compile-only semantics

—comp
 Our proof engineering strategy is to benefit as much as possible from the proof

scripts of these diagrams
generic theorem
Standard CompCert forward
simulation theorem about —comp

Slightly modified CompCert forward sy,
simulation proof script

Slightly modified CompCert forward
simulation theorem about —

Constant-time preservation theorem

21



Four proof techniques

» Each technique provides a specific
tradeoff between generality and
proof tractability

* The first three are slight relaxations

of the classical forward diagram and
reuse existing scripts

Trace preservation

L eak erasing

Trace transformation

CT cube diagram

22
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Conclusion and perspectives

Conclusion

* A machine checked-proof that a mildly modified version of the CompCert
compiler preserves cryptographic constant-time

» A carefully crafted methodology that maximises proof reuse

Perspectives

» Make CompCert generate more efficient code for crypto programs (e.g. using
SIMD instructions)

» Explore other observational information-flow policies and adapt CompCert

24



Execution times of 23 benchmark programs compiled with  gcc -00, s CompCert, gcc -01,and gcc -02

https://www.absint.com/compcert/
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