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• Common side-channel: cache timing attacks︎ 

• Exploit the latency between cache hits and misses ︎ 

• Attackers can recover cryptographic keys

• ︎Tromer et al (2010), Gullasch et al (2011) show 

efficient attacks on AES implementations 

• ︎Based on the use of look-up tables

• Access to memory addresses that depend on 

the key 

Cache timing attacks against cryptographic implementations
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Constant-time programming 
A programming discipline for crypto programmers

• 	Constant-time programs should not

• branch on secrets

• perform memory accesses that depend on secrets 

• This is a strictly stronger property than  
« time execution does not depend on secrets » !


• There are constant-time implementations of many 
cryptographic algorithms: AES, DES, RSA, etc

if (secret)  
then do1()  
else do2()

a[secret] = …

not constant-time

not constant-time
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Cryptographic constant-time verification

• Several verification tools have been built and used for checking that popular 
libraries are constant-time [Almeida16, Rodrigues16]


• But checking low-level implementations is not ideal

• it makes the analysis work harder (e.g. alias analysis)

• it makes the results of the analysis difficult to understand for programmers 
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Cryptographic constant-time verification

• In [ESORICS’17] we provide a verification tool at C 
source level

• it tracks taints in memory and checks the 

constant-time property

• it is based on the Verasco C abstract interpreter 

[POPL’15]


• In this work [POPL’20]

• we prove the CompCert compiler preserves the 

constant-time property
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∀p, ConstantTime(p) ⇒ ConstantTime(compile(p))

S. Blazy, D. Pichardie, A. Trieu. 
Verifying Constant-Time Implementations by Abstract Interpretation.  
ESORICS 2017 & Journal of Computer Security 2019.
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A formally-verified C static analyzer.   
POPL’15.
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Verified Compilation

• Proving semantic properties on non-toy compilers requires a machine-checked proof


• CompCert [Leroy06] is a milestone in this area

• a moderately optimizing compiler for C 

•programmed and verified with the Coq proof assistant 

•now being used in commercial settings and for software certification [Kästner18]


• CompCert theorems show

• it preserves memory safety

• it preserves observable behaviors

•but they says nothing about side channels attacks
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This work

• Makes precise what secure compilation means for cryptographic constant-time


• Provides a machine checked-proof that a mildly modified version of the CompCert 
compiler preserves cryptographic constant-time 


• Explains how to turn a pre-exisiting formally-verified compiler into a formally-
verified secure compiler


• Provides a proof toolkit for proving security preservation with simulation diagrams
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Some background on CompCert
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Background: verifying a compiler

CompCert, a moderately optimizing C compiler usable for critical embedded software 

 
= compiler + proof that the compiler does not introduce bugs 


Using the Coq proof assistant, X. Leroy proves the following semantic preservation 
property:

 


Compiler written from scratch, along with its proof; not trying to prove an existing 
compiler
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For all source programs S and compiler-generated code C, if 
the compiler generates machine code C from source S, 
without reporting a compilation error,  
then «C behaves like S».



Compcert meets the industrial world
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Fly-by-wire software, for recent Airbus planes 

• control-command code generated from block diagrams 

(3600 files, 3.96 MB of assembly code)

• minimalistic OS


 
Results

• Estimated WCET for each file

• Average improvement per file: 14% 

• Compiled with CompCert 2.3, May 2014


 
Conformance to the certification process (DO-178)

• Trade-off between traceability guarantees and efficiency of the generated code
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CompCert: 1 compiler, 11 languages…

type elimination

loop simplifications

CFG construction

expr. decomp.

spilling, reloading

calling conventions

Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachASM

stack allocation

of «&»variables

Optimizations: constant prop., CSE, tail calls, 
(LCM), (software pipelining) 

instruction

selection
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generation

(instruction scheduling)
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We limit our work on 
deterministic semantics

side-effect out 
of expressions

CompCertC

CompCert verification tools 
[Jourdan15,Blazy19]  
work here anyway



CompCert: … and 17 preservations proofs
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Compiler pass Explanation on the pass
Cshmgen Type elaboration, simplification of control
Cminorgen Stack allocation
Selection Recognition of operators and addr. modes
RTLgen Generation of CFG and 3-address code
Tailcall Tailcall recognition
Inlining Function inlining
Renumber Renumbering CFG nodes
ConstProp Constant propagation 
CSE Common subexpression elimination
Deadcode Redundancy elimination
Allocation Register allocation
Tunneling Branch tunneling 
Linearize Linearization of CFG
CleanupLabels Removal of unreferenced labels
Debugvar Synthesis of debugging information
Stacking Laying out stack frames
Asmgen Emission of assembly code 



CompCert preservation proof methodology 

• Each langage is given an operational semantics  that  models a small step 
transition from a state  to a state  by emitting a trace of external events .


• From this stems a notion of program behavior (event trace) for complete (possibly 
infinite) executions.


• Behavior preservation is proved via backward and forward simulation, but thanks to 
langage determinism, forward simulation is enough.
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Verified Static Analysis meets CompCert
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The verified C static analyzer Verasco [POPL’15]

Goal: develop and verify in Coq a realistic static analyzer by 
abstract interpretation

•  language analyzed: the CompCert subset of C

•  nontrivial abstract domains, including relational domains

•  modular architecture inspired from Astrée’s

•  to prove the absence of undefined behaviors in C source 

programs

 
Slogan: 

•  if « CompCert ≈ 1/10th of GCC but formally verified », 

•  likewise « Verasco ≈1/10th of Astrée but formally verified »
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Pichardie Part B2 VESTA

The next step is to strengthen the confidence in the results of static analyses. A verified static analysis is
a static analysis whose semantics correctness has been formally established in a foundational proof assistant
like Coq [21]. Recent breakthroughs in compiler verification show that the formal, mechanized verification of
realistic compilers and verification tools is feasible.

The state of the art in compiler verification today is, arguably, the CompCert verified C compiler [41].
CompCert is the first complete, realistic, formally verified compiler usable for critical embedded software. The
source language is a large subset of C, the language of choice in this application area. The compiler targets
real processors used in actual embedded systems: PowerPC, ARM, and x86. It generates code that is small
enough and e�cient enough to be embedded. Finally, the huge proof of correctness is mechanized, using the
Coq proof assistant. CompCert handles more than ten intermediate languages, as depicted in Figure 1. Most
of the optimisations are performed at the level of the RTL representation: constant propagation, common sub-
expression elimination. These are example of verified static analysis but simpler than what we target in this
project.

More recently we developed the first verified abstract interpreter for C, the Verasco analyzer [37]. It is
inspired by the design of Astrée and is structured in three layers. Its architecture is depicted in Figure 2. At
the top sits the abstract interpreter that infers abstract states at every program point and checks for potential
run-time errors, raising alarms along the way. The middle layer of Verasco is an abstract domain for execution
states [15], tracking the values of program variables, the contents of memory locations, and the chain of function
calls. Concerning values that arise during program execution, the domain tracks pointer values itself via points-
to analysis, but delegates the tracking of numerical values to a numerical domain at bottom layer. This bottom
layer of Verasco, the numerical abstract domain is itself an extensible combination of several domains. Some are
non-relational, such as intervals and congruences, and track properties of the (integer or floating-point) value
of a single program variable or memory cell. Others are relational, such as convex polyhedra and symbolic
equalities, and track relations between the values of several variables or cells. This level of sophistication has
never been reached in verified static analysis so far.

numbers

statesMemory & value domain

control flowAbstract interpreterAlarms

Z → int

Integer congruences Integer & F.P. intervals 

Nonrel→ Rel Nonrel→ Rel
Symbolic 

equalities

Convex 

polyhedra

CompCert compilerC#minorClightCompCert C ...

Figure 2: Verasco architecture

CompCert and Verasco have been developed and formally proved in Coq. This proof assistant not only gives
very high confidence in the proofs but also provides an extraction mechanism that automatically translates the
proved algorithms into real ML implementations. The extracted programs represent several thousand of lines
of ML code. They have been tested on real C programs.

The VESTA project will continue this e↵ort and push it to the next level. We will extend the Verasco
analyser in several direction: expressivity, e�ciency and language target. Last but not least, we will make this
new Verasco the showcase of our open source verified static analysis workbench where user can develop their
own verified static analyser.

3

Verasco architecture



Defining Cryptographic Constant-Time Preservation
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Cryptographic constant-time property: defining leakages

• We enrich the CompCert traces of events with leakages of two types

• either the truth value of a condition, 

• or a pointer representing the address of 

• either a memory access (i.e., a load or a store) 

• or a called function


• Using event erasure, from  we can extract


• the compile-only judgment 


• the leak-only judgment 

• Program leakage is defined as the behavior of the  semantics

s t s′�

s t
comp s′�

s t
leak s′�

leak
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Cryptographic constant-time property: preservation

• We note  the fact that two initial states  and  share the same values for 
public inputs, but may differ on the values of secret inputs 


• A program is constant-time secure w.r.t.  if for two initial states  and  such 
that  holds, then both leak-only executions starting from  and  observe the 
same leakage

φ(s, s′�) s s′�

φ s s′�

φ(s, s′�) s s′�
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Main Theorem (Constant-Time security preservation): Let  be a safe  
Clight source program that is compiled into an x86 assembly program . 
If  is constant-time w.r.t. , then so is .

P
P′�

P φ P′�



Proving Cryptographic Constant-Time Preservation
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Proving cryptographic constant-time preservation 
A proof engineering perspective

• Cryptographic constant-time preservation is a property about the leak-only 
semantics 


• But existing CompCert simulation diagrams deal with the compile-only semantics 



• Our proof engineering strategy is to benefit as much as possible from the proof 
scripts of these diagrams 

leak

comp
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Four proof techniques

• Each technique provides a specific 
tradeoff between generality and 
proof tractability


• The first three are slight relaxations 
of the classical forward diagram and 
reuse existing scripts

22
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A palette of proof methods
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Compiler pass Diagram used Explanation on the pass
Cshmgen Trace preservation Type elaboration, simplification of control
Cminorgen Trace transformation
 Stack allocation
Selection Leak erasing Recognition of operators and addr. modes
RTLgen Trace preservation Generation of CFG and 3-address code
Tailcall Trace preservation Tailcall recognition
Inlining Trace transformation
 Function inlining
Renumber Trace preservation Renumbering CFG nodes
ConstProp Trace transformation
 Constant propagation 
CSE Leak erasing Common subexpression elimination
Deadcode Leak erasing Redundancy elimination
Allocation Leak erasing Register allocation
Tunneling Leak erasing Branch tunneling 
Linearize CT cube diagram Linearization of CFG
CleanupLabels Trace preservation Removal of unreferenced labels
Debugvar Trace preservation Synthesis of debugging information
Stacking Trace transformation
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Asmgen Trace transformation Emission of assembly code 
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Conclusion and perspectives

Conclusion

• A machine checked-proof that a mildly modified version of the CompCert 

compiler preserves cryptographic constant-time

• A carefully crafted methodology that maximises proof reuse 


Perspectives

• Make CompCert generate more efficient code for crypto programs (e.g. using 

SIMD instructions)

• Explore other observational information-flow policies and adapt CompCert

24
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Fig. 10. Relative execution times of our benchmark. We compare the original CompCert, our modified
CompCert, and gcc from −O0 to −O3. We normalized the measured execution times with the execution times
of gcc −O0. The error bars represent the 99% confidence intervals of our measurements.

took about half a person year. This section first presents the results of experiments evaluating the
performance of our constant-time preserving CompCert. Then, it presents the limitations of our
work.

6.1 Experimental Evaluation

We carry our experimental evaluation on selected examples from the literature. We note that our
experimental evaluation is primarily used to validate that our approach is reasonable. However, a
systematic and extensive evaluation of the impact of our compiler, or more generally of the Comp-
Cert compiler, on cryptographic libraries (including widely deployed libraries such as [OpenSSL
2019] or repositories such as [SUPERCOP 2019]) is left for future work.
We first compare our version of CompCert to the original CompCert (version 3.4), and to gcc,

with and without optimizations. We test these compilers on a benchmark of common cryptographic
programs that were shown to be constant-time in [Almeida et al. 2016; Blazy et al. 2019]. They
include cryptographic primitives such as an implementation of elliptic curve arithmetic operations
over Curve25519 [Bernstein 2006; Langley 2015], and TEA [Wheeler and Needham 1994], together
with implementations from commonly used cryptographic libraries such as NaCl [Bernstein et al.
2012] and mbedTLS [ARM 2016]. These are C implementations that we experiment with in order
to evaluate our compiler, but it should be reminded that if performance is an issue, it is generally
better to use hand-optimized assembly code at the cost of portability.

We first measured the execution times (using an Intel i7-8550U CPU 1.8GHz, with 16GB of RAM),
which are shown in Figure 10. We compiled these programs using the original CompCert, our
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