Quelle confiance
peut-on placer dans
les plateformes

B3 ¢

In‘l'ernaﬁonal | materielles qui

Cybersecurity Forum EXECULEntnos
' applications?

28"29" & 30" anuary 2020 Guillaume Hiet

A LILLE Clémentine Maurice

WWW.FORUM-FIC.COM
W i in f VA 4

@FIC_eu . Forum FIC

4

#FIC2020

Who are we?

Guillaume Hiet Clementine Maurice
Assistant professor, CentraleSupélec CNRS researcher
@GuillaumeHiet @BloodyTangerine

72020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Introduction

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

72020 | LILLE GRAN AIS | WWW.FORUM-FIC.COM | #FIC2020

72020 | LILLE GRAN AIS | WWW.FORUM-FIC.COM | #FIC2020

! i
Display —‘—i; |
! I
I
! | DDR Channel
! Intel CPU Core + HD graphics i DDR System Memory
\
Display] |
! :
DP | !
LAAAAAAAAT
! I
! . E SPI
; o omi | c ¢ BIOS/ME flash
Video Card ! |
I PECI/ SMBus |
I
I
1 i
! UsB
Display L ME : ‘ USB ports
isplay i
3 PCH :
I
3 | [_om |
SATA
uss | | SSD /HDD
Camera [N O NS
2
PCIE HDA/I®S
’7’“"&“ Audio
SD Slot uss PCI Express
Ethernet Wifi

y 2020

LILLE GRAND PALAIS

#FIC2020

Display

Display

—

DDR Channel

DDR System Memory

eSPI

BIOS/ME flash
Video Card
] UsB
Display 2] ME 1 | USB ports
I |
Py 1 PCH :
! I
3 | [_om |
UsB | i SATA SSD /HDD
Camera [N O NS
2
PCIE HDA/PS
’7’“"&“ Audio
SD Slot uss PCI Express
Ethernet Wifi

y 2020

LILLE GRAND PALAIS

#FIC2020

GPU

Core

Core

System Agent

Display
Controller

U L3 Slice’_\J L3 Slice

Core

Core

PCI Express

Memory
Controller

28729"30"n0y 2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

GPU

Core re
{ L3 Slice L3 Slice

System Agent

Display
Controller

U L3 Slice’_\J L3 Slice

Core

Core

PCI Express

Memory
Controller

28729"30"n0y 2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

1 ion Cache
32KiB 8-Way.

Tnstruction

[y

e

16 By le

Tnstruction Fetch & PreDecode
(16 8 window)

T e |

Instruction Queue
e e L
.

uor WOP 4OP 40P

locate / Retiremer
uffer (224 entries)

Branch Order
(80B) (4B-entry)

o]

Butter

Execution Engine

ary 2020

ufer

LILLE GRAND PALAIS

* ¥ ¥+ + ¥ ¥ ¥ %

Memory Subsystem

Aem-v an9sz
ay2ed 71

Fill Buffers (LF8)|
(10 entries)

WWW.FORUM-FIC.COM

328B/cycle

L3

| #FiC2020

Front End B D
32KiB 8-Way

16 By le

Tnstruction Fetch & PreDecode
(16 8 window)

Instruction Queue
e e L
.

Aem-v an9sz
ay2ed 71

Execution Engine

/
°A/ave

L1 Data Cache m
Y

3
Line Fill Buffers (LF8)
(10 entries)

Memory Subsystem

LILLE GRAND PALAIS WWW.FORUM-FIC.COM

ary 2020

328B/cycle

L3

#FIC20

Why such complexity?

Performance summary
__Instructions _ Clock cycles = Seconds

CPU time = -
Program " Instruction * Clock cycle

How to increase the performances?

r 120

10,000 + .
2000 3800 2667 3300 3400
4100
T 1000 1 .
£ T80 Z
£ 1004 leo 2
< 2
E 440 2
o 10 +
420

1 t } t t t t t
& 9@ 5 £~] g z .IQQA.'Q.Q’A
85 82 £3 E2 5§ Ticcisoisissgss
= 2 2 £3 29 5E£35 3 e5g £25 255
z @ Z =] '~=§o~ ooﬂoo & 328
- If: &Z ggﬁgﬁ?ﬁoéuogvo?v

a o a =

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Why do we need caches?

Latency
Processor SUPER FAST
SUPER EXPENSIVE
TINY CAPACITY
<0,3ns
FASTER
EXPENSIVE
SMALL CAPACITY 1ns
3ns
10 ns
EDO, SD-RAM, DDR-SDRAM, RD-RAM PHYSICAL MEMORY FAST
PRICED REASONABLY
and More... AVERAGE CAPACITY 100 ns

SOLID STATE MEMORY AVERAGE SPEED
550, Flash Drive P SOLDSTATEMEMORY ______\ ol | 0o 015

// NON-VOLATILE FLASH-BASED MEMORY \\ AVERAGE CAPACITY s

4 A
Mechanical Hard Drives Stom
/ \ LARGE CAPACTITY 1-10 ms

A Simplified Computer Memory Hierarchy
lllustration: Ryan J. Leng

ary 2020 LILLE GRAND PALAIS WWW.FORUM M | #FIC2020

0s

Software components

Video Card
Firmware

Display

ME OS

Y

(EC Firmware) (SSD Firmware)

Display

Display

'

Intel CPU Core + HD

graphics
\

FDI DMmI

spsiot 2B

Ethernet

PCI Express

DDR System Memory

LILLE GRAND PALAIS

WWW.FORUM

usB
USB ports

BIOS/ME
flash

§SD/HDD

Hardware components

#FIC2020

Software components

(0s

Video Card NIC . N
Firmware Firmware J (EC FlrmwareJ (SSD FlrmwareJ

DDR System Memory

Display

BIOS/ME
flash

usB
USB ports

SSD/HDD
Audio
Hardware components

PCl Express

2020 LILLE GRAND PALAIS WWW.FORUM #FIC2020

Display

Display

—

Video Card

(I p——
Display

usB

DDR Channel

DDR System Memory

Camera

usB

PCIl Express

SD Slot

Ethernet

y 2020

LILLE GRAND PALAIS

#FIC2020

|
i
i
|
|
|
i
|
i
\ Pl | BIOS/ME flash
i
i
PECI / SMBus ;

|
| UsB
: ‘ USB ports
i

PCH :
|
| [s |
| SATA
| SSD /HDD
2,

HDA/IS
’7 Audio
PCI Express
Wifi

Display

Display

Video Card

PCI Express

DDR Channel

DDR System Memory

eSPI

BIOS/ME flash

‘ — USB ports

PCl Express

pee= |

Display

B
Camera us
SD Slot use

Ethernet

SATA

Audio

SSD/HDD

PCl Express

Wifi

020 LILLE GRAND PALAIS

! i
Display | SMMoache) | -
| poisoning I
! | DDR Channel
I Intel CPU Core + HD graphics 1 DDR S
! I
Display i | Row Hammer
1 :
DP | !
\—‘ I
! |
! E SPI
! ol omi ! c | BIOS/ME flash
Video Card ! |
I PECI/ SMBus |
I
1 |
I
i CVE-2017-5689 [UsB
Displa | op e i | USB ports
I |
play : PCH :
|
; CVE-201 7-5705,6,7]‘
uss | ! SAA_| ssD/HDD
Camera [N O NS
2
PCIE HDA/I’S
’7""&55 Audio
SD Slot uss PCI Express
Ethernet Wifi

y 2020 LILLE GRAND PALAIS #FIC2020

BIOS/ME flash

I
Display SMMcache) |
poisoning !
| DDR Channel
Intel CPU Core + HD graphics 1 DDR S ’
I
Display i Row Hammer
I
I
I
I
I
I
|
I
I
I

Video Card

i L e USB ports
Display 1 ‘

SATA
usB \; SSD /HDD
Camera |———— | o ______ .
PCIE
’7’“"&“ Audio
SD Slot uss PCI Express
Ethernet Wifi

020 LILLE GRAND PALAIS WW!

outiine]

1. Introduction

2. Side-channel attacks on SGX

3. Detection of Attacks Against the System Management Mode
4. SILM Thematic Semester

5. Conclusion

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Side-channel attacks on SGX

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Side channels t]

» channels that are outside of the functional specification, i.e., that are not
supposed to carry useful information

2872975 30"y 2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Side channels t]

» channels that are outside of the functional specification, i.e., that are not
supposed to carry useful information

» however they can leak secret information, exploiting implementations

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Side channels t]

C A J

y ©

» channels that are outside of the functional specification, i.e., that are not
supposed to carry useful information

» however they can leak secret information, exploiting implementations

> can be performed by software, e.g., measuring memory accesses

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Side channels t]

C A J

y ©

» channels that are outside of the functional specification, i.e., that are not
supposed to carry useful information

» however they can leak secret information, exploiting implementations
> can be performed by software, e.g., measuring memory accesses
— attacker monitors which cache lines are accessed, not the content

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Sandboxes vs Trusted Execution Environments (TEEs) t]

> sandboxes assume trusted system and untrusted
application

— protects system from harm

G — e.g., JavaScript in the browser

020 | LILLE CRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Sandboxes vs Trusted Execution Environments (TEEs) t]

> sandboxes assume trusted system and untrusted
application

— protects system from harm

i — e.g., JavaScript in the browser

» TEEs assume an untrusted system and a trusted

_ application

— isolates the application
— e.g., cloud, DRM, app that manipulates secrets...

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Trusted Execution Environments

Threat model

» malicious 0OS
» only the CPU is trusted

— TEE memory is encrypted — inaccessible to the OS

sy 2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Trusted Execution Environments

Threat model

» malicious 0OS
» only the CPU is trusted

— TEE memory is encrypted — inaccessible to the OS

Implementations

> Intel: SGX
» ARM and AMD: TrustZone

wry2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Trusted Execution Environments

Threat model

» malicious 0OS
» only the CPU is trusted

— TEE memory is encrypted — inaccessible to the OS

Implementations

» Intel: SGX
» ARM and AMD: TrustZone

wry2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

What is SGX?

Application

Untrusted part Trusted

Create Enclave
Trusted Fnc.

| Call Trusted Fnc.i

Call Gate

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Let’s go back to the threat model t]

Previous work showed that code inside an enclave
is not protected from side channels from outside

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Let’s go back to the threat model t]

Previous work showed that code inside an enclave
is not protected from side channels from outside

AR

‘ What if the enclave contains malicious code?

-
v

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

SGX limitations

Classical exploits cannot be mounted within SGX:
> no syscalls
» no shared memory/libraries
> no interprocess communication
» blocked instructions

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Side-channel attacks on SGX (Schwarz et al. 2017) t]

Attacker Victim
SGX SGX
RSA
Malware Signature
(Prime+Probe) + private key
Loader Public API
L1/L2 Cache L1/L2 Cache
Shared LLC

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Prime+Probe (1/2)

> exploits timing differences [0 cache hits [[cache misses
between:
- cached data (fast)
- uncached data (slow)

Number of accesses

> targets a cache set

» works across CPU cores (shared LLC) oo o 200 100

Access time [CPU] cycles

28729"& 30" 20 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Prime+Probe (2/2)

Victim address space Cache Attacker address space

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Prime+Probe (2/2)

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Prime+Probe (2/2)

loads data

— —

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

ay2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Prime+Probe (2/2)

loads data

T — ——

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

ay2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Prime+Probe (2/2)

ast access

m
e e e e

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)
Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Prime+Probe (2/2)

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)
Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Attack on RSA square-and-multiply exponentiation (1/2)

mbedTLS version 2.3.0 (fixed since)

Algorithm 1: Square-and-multiply exponentiation
Input: base b, exponent e, modulus n
Output: b€ modn
X1
for i < bitlen(e) downto o do

X < multiply(X,X)

if e; =1 then

| X« multiply(X, b)

end
end
return X

ey 2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Attack on RSA square-and-multiply exponentiation (2/2) t]

» raw Prime+Probe trace on the buffer holding the multiplier b

ay2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Attack on RSA square-and-multiply exponentiation (2/2) t]

» raw Prime+Probe trace on the buffer holding the multiplier b
» processed with a simple moving average

72020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Attack on RSA square-and-multiply exponentiation (2/2)

» raw Prime+Probe trace on the buffer holding the multiplier b
» processed with a simple moving average
> allows to clearly recover the bits of the secret exponent

— 96% of a 4096-bit RSA key from a single trace, full key using 11 traces

: 5 E 3
$ 22 AR LoV . wih U onaEY ARl R P R AN A -

101 1100000001000101001 1001 101 111 101111010001001 110100011 100001 11

ey 2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

We need to differentiate between events a few
nanoseconds apart:

> rdtsc instruction does that very well

> unprivileged...

28729"& 30" 20 | LILLE CRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

We need to differentiate between events a few
nanoseconds apart:

> rdtsc instruction does that very well
> unprivileged...
> ... but not permitted inside SGX enclaves

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

We need to differentiate between events a few
nanoseconds apart:

> rdtsc instruction does that very well
> unprivileged...
> ... but not permitted inside SGX enclaves

Build your own timer!

» start a thread that continuously increments a global variable

» the global variable is our timestamp

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

How about detection? t]

» 0S cannot inspect the enclave: traditional methods fail

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

How about detection? t]

» 0S cannot inspect the enclave: traditional methods fail
» performance counters can detect cache attacks — high rate of cache misses

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

How about detection?

» OS cannot inspect the enclave: traditional methods fail
» performance counters can detect cache attacks — high rate of cache misses

» however they are disabled inside the enclave

109
[Native
1 0o sex

LUL 1 1

L1 Hits L1 Misses L3 Hits L3 Misses

Performance
counter value

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Lessons learned

» hardware optimizations (e.g., cache) can create side channels to exploit
weak software implementations

020 | LILLE CRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Lessons learned

» hardware optimizations (e.g., cache) can create side channels to exploit
weak software implementations

> SGX does not protect from side-channel attacks

— enclaves are not a magic protection
— Intel: "this is not in the threat model”

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Lessons learned

» hardware optimizations (e.g., cache) can create side channels to exploit
weak software implementations

> SGX does not protect from side-channel attacks

— enclaves are not a magic protection
— Intel: "this is not in the threat model”

» SGX can actually protect malware
— security features can be abused too
— rethink enclave protection?

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Detection of Attacks Against the
System Management Mode

2872975 30"y 2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Computers rely on firmware t]

Less
Where can we find firmware?

> Hard disks, network cards, etc.

» Motherboards BIOS/UEFI @n

s

What is it? a
» Low-level software

» Tightly linked to hardware More

» Stored into a dedicated flash memory

Boot time vs Runtime

> Early execution and configuration
» Highly privileged runtime software

m Applications
Operating

O
a System

. UEFI
Firmware

'. Hardware

sy 2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM

| #FiC2020

What is the problem? t]

BIOSs are often written in unsafe languages (i.e., C & assembly)

» Memory safety errors (e.g., use after free or buffer overflow)

» BIOSs are not exempt from vulnerabilities (Kallenberg et al. 2013; Bazhaniuk
et al. 2015)

Why compromise a BIOS?

» Malware can be hard to detect (stealth)

» Malware can be persistent (survives even if the HDD/SSD is changed)

What do we want?

> Boot time integrity
» Runtime integrity (some platforms are rarely rebooted)

wry2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

What are the currently used solutions?

Boot time co
» Signed updates

» Signature verification before executing
O

» Measurements and reporting to a TPM chip Verify(

» Immutable hardware root of trust .

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Operating
System
Signed
Bootloader Updates
UEFI
Firmware Measure &
Report
Immutable epo
Root of Trust

What are the currently used solutions? t]

Boot time co Operating
System
» Signed updates Bootloader 55.;::5

» Signature verification before executing

; ; FirlrJnE\;;re Measure &
> Measurements and reporting to a TPM chip Ve,ify< \ Report
:.: Immutable

» Immutable hardware root of trust Root of Trust

Runtime
Isolation of critical runtime services available while the OS is running:

» BIOS update, power management, UEFI variables handling, etc.

— our focus is on the System Management Mode (SMM)

ey 2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Introducing the System Management Mode (SMM) t]

SMM is the highest privileged execution mode for x86 processors.

How to enter the SMM?

» Trigger a System Management Interrupt (SMI)

> SMIs code & data are stored in a protected memory region: System
Management RAM (SMRAM)

BIOS code is not exempt from vulnerabilities affecting SMM
(Bazhaniuk et al. 2015; Bulygin et al. 2017; Pujos 2016)

Why is it interesting for an attacker?

» Only mode that can write to the flash containing the BIOS
> Arbitrary code execution in SMM gives full control of the platform

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Our objective t]

Our goal is to detect attacks that modify the expected behavior of the SMM by
monitoring its behavior at runtime.

Response 1 Raise aler.t or
— N > Stop execution or |
Behavior | !

A

Runtime v . i
Firmware Monitoring Monitor| to-o----moooo---

Such goal raises the following questions:

» How to ensure the integrity of the monitor?
» How to define a correct behavior?

» How to monitor?

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Approach overview (Chevalier et al. 2017)

2020 LILLE GRAND PALAIS WWW.FORUM-FIC.COM #FIC2020

Approach overview (Chevalier et al. 2017)

Monitor

How to ensure the
integrity of the monitor?

2020 LILLE GRAND PALAIS WWW.FORUM-FIC.COM #FIC2020

Approach overview (Chevalier et al. 2017)

. Semantic gap?
Monitor

How to ensure the
integrity of the monitor?

2020 LILLE GRAND PALAIS WWW.FORUM-FIC.COM #FIC2020

Approach overview (Chevalier et al. 2017)

How to monitor?

. bridging the semantic gap
Monitor Target

Unidirectional

How to ensure the
integrity of the monitor?

LLVM-based

) Instrumented
Compiler

SMM code

BIOS source codg
SMM source
code

2020 LILLE GRAND PALAIS WWW.FORUM-FIC.COM | #FIC2

Approach overview (Chevalier et al. 2017)

How to monitor?

. bridging the semantic gap
Monitor Target

Unidirectional

How to ensure the
integrity of the monitor?

Expected L HEzses Instrumented

target behavior Compiler SMM code

BIOS source codg

SMM source How to define a correct behavior?
code

2020 | LILLE GRAND PALAIS WWW.FORUM-FIC.COM

How to define a correct behavior?

Our use case: SMM code

» Written in unsafe languages (i.e., C & assembly)
— Such languages are often targeted by attacks hijacking the control flow

» Tightly coupled to hardware
— Such software modifies hardware configuration registers

Control Flow Graph (CFG)
Define the control flow that the software is expected to follow

— Control Flow Integrity (CFI)
Invariants on CPU registers
Define rules that registers are expected to satisfy

— CPU registers integrity

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Control Flow Integrity (CFI): principle

Example

void auth(int a, int b) {
char buffer([512];

[...vuln...]

verification(buffer);

}
void verification(char *input) {
if (strcmp(input, "secret") == 0)
authenticated();
else

non_authenticated();

Simplified graph

Authenticated

Non
authenticated

<—| verification |<—| auth |

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Control Flow Integrity (CFI): principle

Example

void auth(int a, int b) {
char buffer([512];

[...vuln...]

verification(buffer);

}
void verification(char *input) {
if (strcmp(input, "secret") == 0)
authenticated();
else

non_authenticated();

Simplified graph

Authenticated

Non
authenticated

<—| verification |<—| auth |

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Control Flow Integrity (CFI): principle

Example Simplified graph

void auth(int a, int b) { Authenticated

char buffer([512];

[...vuln...] Non <—| verification |<—| auth |

authenticated

verification(buffer);

}
void verification(char *input) {
if (strcmp(input, "secret") == 0)
authenticated();
else

non_authenticated();

Goal: constrain the execution path to follow a control-flow graph (CFG)

2872975 30"y 2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

CPU registers integrity t]

SMM code is tightly coupled to hardware

» Generic detection methods (e.g., CFI) are not aware of hardware specificities

» Adhoc detection methods are needed

Some interesting registers for an attacker

» SMBASE: Defines the SMM entry point
» CR3: Physical address of the page directory

— Their value is saved in memory and is not supposed to change at runtime

How to protect such registers?

» Send the expected values at boot time
» Send current values at runtime to detect any discrepancy

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Communication channel constraints t]

Security constraints
» Message integrity
» Chronological order

> Exclusive access

Performance constraints

> Acceptable latency of an SMI as defined by Intel BIOS Test Suite: 150 us

» More than 150 ps per SMI handler leads to degradation of performance or
user experience

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Communication channel design t]

Additional hardware component

» Chronological order
— FIFO
Restricted

> Message integrity FIFO

— Restricted FIFO In SMM?
(SMIACTH)

» Exclusive access

— Check if CPU is in SMM (SMIACT# signal)
> Performance

— Use a low latency interconnect

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Our experimental setup t]

Our prototype is implemented in a simulated and emulated environment
SMM code implementations used

» EDK2: foundation of many BlOSes (Apple, HP, Intel,...)
— UEFI Variables SMI handlers

» coreboot: perform hardware initialization (used on some Chromebooks)
— Hardware-specific SMI handlers

We want to emulate SMM environment and features
QEMU emulator for security evaluation

We want to simulate accurately the performance impact
gems simulator for performance evaluation

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Security evaluation t]

We simulated attacks that exploited vulnerabilities similar to those found in
real-world BIOSes

Vulnerability Attack Target Security Advisories Detected

Buffer overflow Return address CVE-2013-3582 Yes
Arbitrary write Function pointer CVE-2016-8103 Yes
Arbitrary write SMBASE LEN-4710 Yes

Insecure call ~ Function pointer LEN-8324 Yes

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Running time overhead for SMI handlers

» Under the 150 microseconds limit defined by Intel
> Most of the communication overhead is due to the shadow call stack

EDK2 coreboot
~o-mw BN Original ' 30~ : ‘
‘g Il Communication overhead :
8 4O e I [nstrumentation overhead) 25 -
2 i | |
% 30 - } - 20 -
=
Q
E 20- 5
=2
o 1.0 -
E 10 -
& 05 -
o~
SetVariable GetVariable Query GetNext 0.0 -
VariableInfo VariableName i82801gx i82801gx i82801gx AMD Agesa AMD Agesa
APMC TCO PM1 APMC GPE

ey 2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Lessons learned t]

» SMM code can be vulnerable to memory errors

> Attackers exploiting such vulnerabilities can gain full control of the
platform

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Lessons learned t]

» SMM code can be vulnerable to memory errors

> Attackers exploiting such vulnerabilities can gain full control of the
platform

» We can detect such attacks using a behavior and event-based intrusion
detection system implemented on an isolated co-processor

» Acceptable performance (< 150 ps Intel threshold)

30"y 2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Lessons learned t]

» SMM code can be vulnerable to memory errors

> Attackers exploiting such vulnerabilities can gain full control of the
platform

» We can detect such attacks using a behavior and event-based intrusion
detection system implemented on an isolated co-processor

» Acceptable performance (< 150 ps Intel threshold)

» What can we do next?
- React and restore the platform in a sane state
- Implement other detection approaches to detect other classes of attacks (e.g
non-control data attacks)

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

SILM

2020 LILLE GRAND PALAIS

Cybersecurity thematic semesters t]

Objectives
» Promote the scientific, teaching and industrial transfer activities on a
specific subject
> Identify scientific and technological challenges in that field
> Propose a strategic action plan

Organization and funding
» Funded by the DGA

» Managed by Inria, on behalf of all the partners of the PEC research centre
(Pole d’excellence cyber)

» Led by one or several researchers from PEC partners

https://semestres-cyber.inria.fr/en/

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

https://semestres-cyber.inria.fr/en/

SILM thematic semester t]

leeda- @ IRISA -7

CentraleSupélec

Actions
» Organization of different events: a summer school, dedicated workshops
and a regular seminar
» Animation of a working group and publication of a white-paper
» Invitation of researchers

ey 2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

https://silm.inria.fr/

Three complementary research areas t]

1. Analysing the behavior and state of hardware components
Fuzzing
Reverse-engineering
Trace mechanisms
Automated specification analysis
2. Assessing the security of these hardware components
- Side-channel attacks
- Fault injection
- Exploiting unspecified behaviors
3. Detecting or preventing software attacks

- Using dedicated hardware components
- Software countermeasures against hardware vulnerabilities

ey 2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Organization team

G. Hiet
(CS/Inria, CIDRE)
Project coordinator, Workshops, Working Group & White Book

(AN
J.-L. Lanet F. Tronel R. Lashermes
(Inria LHS/CIDRE) (CNRS, EMSEC) (cS/Inria, CIDRE) (Inria)
Workshops Summer school Workshops, Summer Seminar
school

830"y 2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

SILM Summer School of the GDR Sécurité Informatique t]

E Tl ‘

» 47 participants from 7 countries: students, young researchers and engineers
> Lectures, labs and CTF, over 4 days and a half

» Organizing committee: Clémentine Maurice, Frédéric Tronel

» Slides and videos of the presentations available on the web site

https://silm-school.inria.fr/

oy 2020 | LILLE CRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

https://silm-school.inria.fr/

SILM Workshop 2019 t]

» November 20-21 2019 in Rennes, France during the European Cyber Week
> First session in common with C&ESAR conference

» 11 invited speakers + 1 paper accepted by C&ESAR conference

» Organizing committee: Guillaume Hiet, Frédéric Tronel, Jean-Louis Lanet
» Slides and videos of the presentations available on the web site

https://silm-workshop.inria.fr

30"y 2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

https://silm-workshop.inria.fr

SILM Workshop 2020

> June 19, 2020 in Genova, Italy

» Workshop collocated with the 5th IEEE European Symposium on Security
and Privacy

» Invited speakers + CFP

» Organizing committee: Guillaume Hiet, Frédéric Tronel, Jean-Louis Lanet

» Submit articles!

https://silm-workshop-2020.inria.fr

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

https://silm-workshop-2020.inria.fr

Seminar and Working Group t]

SILM Seminar
» One Friday/month, 2 presentations, at Inria in Rennes, France
» Organizing committee: Ronan Lashermes
» Slides and videos of the presentations available on the web site

https://semestres-cyber.inria.fr/en/silm-seminar/

Working group

> Objectives: review the state-of-the-art, identify scientific challenges,
technical obstacles, industrial transfer perspectives
» Managed by Guillaume Hiet

» Deliverables and outcomes: white paper + list of project proposals that
should be funded in priority

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

https://semestres-cyber.inria.fr/en/silm-seminar/

Conclusion

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Conclusion t]

Vulnerabilities on CPU micro-architectures and firmware are a serious issue

> Be careful of the considered threat model

» Often combined vulnerabilities in hardware (weak isolation) and software
(use of vulnerable algorithms)

What can we do?

» Remove hardware optimization (HT, speculative execution, cache, etc.)?
- Implies a huge impact on performances!

» Patch vulnerable code
- How can we patch all the vulnerabilities? What about third parties?

» Propose generic solutions combining hardware and software

- We need hardware support (same story as memory errors)
- Such mechanism has to be configured by software (0S, application or compiler
support)

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Bibliography

Bazhaniuk, Oleksandr et al. (2015). “A new class of vulnerabilities in SMI handlers”. CanSecWest,
Vancouver, Canada.

Bulygin, Yuriy et al. (2017). “BARing the System: New vulnerabilities in Coreboot & UEFI based
systems”. REcon Brussels.

Chevalier, Ronny et al. (Dec. 2017). “Co-processor-based Behavior Monitoring: Application to the
Detection of Attacks Against the System Management Mode”. In: ACSAC 2017 - 33rd Annual
Computer Security Applications Conference. Vol. 2017. Proceedings of the 33rd Annual Computer
Security Applications Conference. Orlando, United States: ACM, pp. 399-411. DOI:
10.1145/3134600.3134622. URL: https://hal.inria.fr/hal-01634566.

Kallenberg, Corey et al. (2013). “Defeating Signed BIOS Enforcement”. EkoParty, Buenos Aires.

Pujos, Bruno (2016). SMM unchecked pointer vulnerability. URL: http: //esec-
lab.sogeti.com/posts/2016/05/30/smm-unchecked-pointer-vulnerability.html.

Schwarz, Michael et al. (2017). “Malware Guard Extension: Using SGX to Conceal Cache Attacks”. In:
DIMVA.

ey 2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

https://doi.org/10.1145/3134600.3134622
https://hal.inria.fr/hal-01634566
http://esec-lab.sogeti.com/posts/2016/05/30/smm-unchecked-pointer-vulnerability.html
http://esec-lab.sogeti.com/posts/2016/05/30/smm-unchecked-pointer-vulnerability.html

Control Flow Integrity (CFI): type-based verification

We focus on indirect branches integrity

Type-based verification
Ensures the integrity of indirect calls

typedef struct SomeStruct {
[...]
char (*foo) (int);

} SomeStruct;

int bar(SomeStruct *s) {

char c;

[...]

c = s—>foo(31);
[...]

}

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Control Flow Integrity (CFI): type-based verification

We focus on indirect branches integrity

Type-based verification
Ensures the integrity of indirect calls

typedef struct SomeStruct {
[...]
char (*foo) (int);

} SomeStruct;

int bar(SomeStruct *s) {
char c;

020 | LILLE CRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Control Flow Integrity (CFI): type-based verification

We focus on indirect branches integrity

Type-based verification
Ensures the integrity of indirect calls

typedef struct SomeStruct {
[...]

} SomeStruct;
int bar(SomeStruct *s) {

char c;

[...]

c = s—>foo(31);
[...]

}

020 | LILLE CRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Control Flow Integrity (CFI): type-based verification

We focus on indirect branches integrity

Type-based verification
Ensures the integrity of indirect calls

Compile time i
SMM source p Target Runtime
code "

Compilation

typedef struct SomeStruct {

Compile time i
[...] p Monitor Runtime
char (*foo) (int); !
} SomeStruct; 1

int bar(SomeStruct *s) {

char c;

[...]

c = s—>foo(31);
[...]

}

y2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Control Flow Integrity (CFI): type-based verification

We focus on indirect branches integrity

Type-based verification
Ensures the integrity of indirect calls

Compile time i
SMM source p Target Runtime
code "

Compilation

typedef struct SomeStruct { b '
Compile time Runtime

I, 0x0£££b804 i8(i32)|

[...] ~—————————— Monitor
Call site ID Type i
} SomeStruct; L 1561 i8(i32) :
int bar(SomeStruct *s) { 4852 i3ﬁfis) 1
char c; :
0.1 Function Address | Type 3

0xObefca04 i32()

EEESEREY - cot site 1 = 1561 +/

[...]
}

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Control Flow Integrity (CFI): type-based verification

We focus on indirect branches integrity

Compile time i
SMM source p Target Runtime
code "

Type-based verification

. . . . K Message
Ensures the integrity of indirect calls it Instrumented | .
grity Compitation - "Sremented | Feusien | o |
!
typedef struct SomeStruct { = : Address
Compile time = Runtime
[...] ~—————————— Monitor
char (*foo) (int); call Site D | Type !
} SomeStruct; Lol 1561 i8(i32) '
int bar(SomeStruct *s) { 4852 L
char c; :
[] Function Address | Type 3
o [0x0£££b804 i8(i32), |
0x0befca0dd i32() !
c = s->foo(31); /* Call Site ID = 1561 */
[...]

}

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Control Flow Integrity (CFI): type-based verification

We focus on indirect branches integrity

Compile time i
SMM source p Target Runtime
code "

Type-based verification

. . . . K Message
Ensures the integrity of indirect calls Compilation R =
o
typedef struct SomeStruct { = : Address
Compile time = Runtime
[...] ~—————————— Monitor
char (*foo) (int); CallSite ID | Type ‘ Message
} SomeStruct; e el T usen [|
int bar(SomeStruct *s) { CENEET N
Add
char c; | ress
[] Function Address | Type 3
e L1 04 |i(iz ‘ valid?
0x0befca0dd i32() i
[SendMessage (1561, s->foo)]

c = s->foo(31); /* Call Site ID = 1561 */
[...]

72020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Control Flow Integrity (CFI): shadow call stack

Shadow call stack
Ensures integrity of the return address on the stack

SMM source | compile time Runtime
code Target
% A Instrumented 1 Message
Compilation |
SMM code ; Return 0x0£8a520c
! Address
. Runtime
Monitor
Shadow call stack
Message
0x0£8522d0 Return 0x0£8a520¢
0x0£8a520¢ Address
pop

(valid?

LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Number and size of equivalence classes for the type-based verifi

Our analysis with EDK Il gave:

» 158 equivalence classes of size 1,
> 24 of size 2,

> 42 of size 3,

» 2 of size 5,

> 1o0fsize o9,

» and 1 of size 13.

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

Slide 3, Google

> Slide 8, WikiChip https://en.wikichip.org/

v

vV v v Vv

Slide 9, Instructor materials for "Computer Organization and Design, RISC-V
Edition”, Patterson & Hennessy, 2018

Slide 10, Rian J. Lang
Slides 16, 20 icons made by Smashicons from www.flaticon.com
Slides 17, 19, 15, 26 icons made by Freepik from www.flaticon.com

Slide 15, icon made by monkik from www.flaticon.com

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

https://en.wikichip.org/
www.flaticon.com
www.flaticon.com
www.flaticon.com

Images Credits t]

Name Author License
Application Christopher CCBY 3.0US
Chip Settings Luis Rodrigues CCBY 3.0US
Gear Jonathan Higley CCo 1.0 Universal
Harddrive Creaticca Creative Agency CC BY 3.0 US
Microchip Creative Stall CCBY3.0US

Research Gregor Cresnar CCBY 3.0US

20 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020

https://thenounproject.com/term/application/1249006/
https://thenounproject.com/christopher20andreas/
https://creativecommons.org/licenses/by/3.0/us/
https://thenounproject.com/term/chip-settings/51255/
https://thenounproject.com/lmf.rodrigues/
https://creativecommons.org/licenses/by/3.0/us/
https://thenounproject.com/term/gear/5262/
https://thenounproject.com/jonathan/
https://creativecommons.org/publicdomain/zero/1.0/
https://thenounproject.com/term/harddrive/965822/
https://thenounproject.com/creaticca/
https://creativecommons.org/licenses/by/3.0/us/
https://thenounproject.com/term/microchip/147506/
https://thenounproject.com/creativestall/
https://creativecommons.org/licenses/by/3.0/us/
https://thenounproject.com/term/research/252623/
https://thenounproject.com/grega.cresnar/
https://creativecommons.org/licenses/by/3.0/us/

	Introduction
	Side-channel attacks on SGX
	Detection of Attacks Against the System Management Mode
	SILM Thematic Semester
	Conclusion

