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Guillaume Hiet Clementine Maurice
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Introduction
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Why such complexity?

Performance summary
__Instructions _ Clock cycles = Seconds

CPU time = -
Program " Instruction * Clock cycle

How to increase the performances?
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Why do we need caches?

Latency
Processor SUPER FAST
SUPER EXPENSIVE
TINY CAPACITY
<0,3ns
FASTER
EXPENSIVE
SMALL CAPACITY 1ns
3ns
10 ns
EDO, SD-RAM, DDR-SDRAM, RD-RAM PHYSICAL MEMORY FAST
PRICED REASONABLY
and More... AVERAGE CAPACITY 100 ns

SOLID STATE MEMORY AVERAGE SPEED
550, Flash Drive P SOLDSTATEMEMORY ______\ ol | 0o 015

// NON-VOLATILE FLASH-BASED MEMORY \\ AVERAGE CAPACITY s

4 A
Mechanical Hard Drives Stom
/ \ LARGE CAPACTITY 1-10 ms

A Simplified Computer Memory Hierarchy
lllustration: Ryan J. Leng
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Side-channel attacks on SGX
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Side channels t]

» channels that are outside of the functional specification, i.e., that are not
supposed to carry useful information
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Side channels t]

» channels that are outside of the functional specification, i.e., that are not
supposed to carry useful information

» however they can leak secret information, exploiting implementations
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Side channels t]
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» channels that are outside of the functional specification, i.e., that are not
supposed to carry useful information

» however they can leak secret information, exploiting implementations

> can be performed by software, e.g., measuring memory accesses

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020



Side channels t]

C A J

y ©

» channels that are outside of the functional specification, i.e., that are not
supposed to carry useful information

» however they can leak secret information, exploiting implementations
> can be performed by software, e.g., measuring memory accesses
— attacker monitors which cache lines are accessed, not the content
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Sandboxes vs Trusted Execution Environments (TEEs) t]

> sandboxes assume trusted system and untrusted
application

— protects system from harm

G — e.g., JavaScript in the browser
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Sandboxes vs Trusted Execution Environments (TEEs) t]

> sandboxes assume trusted system and untrusted
application

— protects system from harm

i — e.g., JavaScript in the browser

» TEEs assume an untrusted system and a trusted

_ application

— isolates the application
— e.g., cloud, DRM, app that manipulates secrets...

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020



Trusted Execution Environments

Threat model

» malicious 0OS
» only the CPU is trusted

— TEE memory is encrypted — inaccessible to the OS
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Trusted Execution Environments

Threat model

» malicious 0OS
» only the CPU is trusted

— TEE memory is encrypted — inaccessible to the OS

Implementations

> Intel: SGX
» ARM and AMD: TrustZone
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Trusted Execution Environments

Threat model

» malicious 0OS
» only the CPU is trusted

— TEE memory is encrypted — inaccessible to the OS

Implementations

» Intel: SGX
» ARM and AMD: TrustZone
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What is SGX?

Application

Untrusted part Trusted

Create Enclave
Trusted Fnc.

| Call Trusted Fnc.i

Call Gate
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Let’s go back to the threat model t]

Previous work showed that code inside an enclave
is not protected from side channels from outside
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Let’s go back to the threat model t]

Previous work showed that code inside an enclave
is not protected from side channels from outside

AR

‘ What if the enclave contains malicious code?

-
v
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SGX limitations

Classical exploits cannot be mounted within SGX:
> no syscalls
» no shared memory/libraries
> no interprocess communication
» blocked instructions
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Side-channel attacks on SGX (Schwarz et al. 2017) t]

Attacker Victim
SGX SGX
RSA
Malware Signature
(Prime+Probe) + private key
Loader Public API
L1/L2 Cache L1/L2 Cache
Shared LLC
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Prime+Probe (1/2)

> exploits timing differences [0 cache hits [ [ cache misses
between:
- cached data (fast)
- uncached data (slow)

Number of accesses

> targets a cache set

» works across CPU cores (shared LLC) oo o 200 100

Access time [CPU] cycles
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Prime+Probe (2/2)

Victim address space Cache Attacker address space
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Prime+Probe (2/2)

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)
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Prime+Probe (2/2)

loads data

— —

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running
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Prime+Probe (2/2)

loads data

T — ——

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running
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Prime+Probe (2/2)

ast access

m
e e e e

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)
Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed
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Prime+Probe (2/2)

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)
Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed
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Attack on RSA square-and-multiply exponentiation (1/2)

mbedTLS version 2.3.0 (fixed since)

Algorithm 1: Square-and-multiply exponentiation
Input: base b, exponent e, modulus n
Output: b€ modn
X1
for i < bitlen(e) downto o do

X < multiply(X,X)

if e; =1 then

| X« multiply(X, b)

end
end
return X
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Attack on RSA square-and-multiply exponentiation (2/2) t]

» raw Prime+Probe trace on the buffer holding the multiplier b
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Attack on RSA square-and-multiply exponentiation (2/2) t]

» raw Prime+Probe trace on the buffer holding the multiplier b
» processed with a simple moving average
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Attack on RSA square-and-multiply exponentiation (2/2)

» raw Prime+Probe trace on the buffer holding the multiplier b
» processed with a simple moving average
> allows to clearly recover the bits of the secret exponent

— 96% of a 4096-bit RSA key from a single trace, full key using 11 traces

: 5 E 3
$ 22 AR LoV . wih U onaEY ARl R P R AN A -

101 1100000001000101001 1001 101 111 101111010001001 110100011 100001 11
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We need to differentiate between events a few
nanoseconds apart:

> rdtsc instruction does that very well

> unprivileged...
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We need to differentiate between events a few
nanoseconds apart:

> rdtsc instruction does that very well
> unprivileged...
> ... but not permitted inside SGX enclaves
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We need to differentiate between events a few
nanoseconds apart:

> rdtsc instruction does that very well
> unprivileged...
> ... but not permitted inside SGX enclaves

Build your own timer!

» start a thread that continuously increments a global variable

» the global variable is our timestamp
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How about detection? t]

» 0S cannot inspect the enclave: traditional methods fail

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020



How about detection? t]

» 0S cannot inspect the enclave: traditional methods fail
» performance counters can detect cache attacks — high rate of cache misses
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How about detection?

» OS cannot inspect the enclave: traditional methods fail
» performance counters can detect cache attacks — high rate of cache misses

» however they are disabled inside the enclave

109
[ Native
1 0o sex

LUL 1 1

L1 Hits L1 Misses L3 Hits L3 Misses

Performance
counter value
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Lessons learned

» hardware optimizations (e.g., cache) can create side channels to exploit
weak software implementations
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Lessons learned

» hardware optimizations (e.g., cache) can create side channels to exploit
weak software implementations

> SGX does not protect from side-channel attacks

— enclaves are not a magic protection
— Intel: "this is not in the threat model”
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Lessons learned

» hardware optimizations (e.g., cache) can create side channels to exploit
weak software implementations

> SGX does not protect from side-channel attacks

— enclaves are not a magic protection
— Intel: "this is not in the threat model”

» SGX can actually protect malware
— security features can be abused too
— rethink enclave protection?
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Detection of Attacks Against the
System Management Mode
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Computers rely on firmware t]

Less
Where can we find firmware?

> Hard disks, network cards, etc.

» Motherboards BIOS/UEFI @n

s

What is it? a
» Low-level software

» Tightly linked to hardware More

» Stored into a dedicated flash memory

Boot time vs Runtime

> Early execution and configuration
» Highly privileged runtime software

m Applications
Operating

O
a System

. UEFI
Firmware

'. Hardware
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What is the problem? t]

BIOSs are often written in unsafe languages (i.e., C & assembly)

» Memory safety errors (e.g., use after free or buffer overflow)

» BIOSs are not exempt from vulnerabilities (Kallenberg et al. 2013; Bazhaniuk
et al. 2015)

Why compromise a BIOS?

» Malware can be hard to detect (stealth)

» Malware can be persistent (survives even if the HDD/SSD is changed)

What do we want?

> Boot time integrity
» Runtime integrity (some platforms are rarely rebooted)
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What are the currently used solutions?

Boot time co
» Signed updates

» Signature verification before executing
O

» Measurements and reporting to a TPM chip Verify(

» Immutable hardware root of trust .
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What are the currently used solutions? t]

Boot time co Operating
System
» Signed updates Bootloader 55.;::5

» Signature verification before executing

; ; FirlrJnE\;;re Measure &
> Measurements and reporting to a TPM chip Ve,ify< \ Report
:.: Immutable

» Immutable hardware root of trust Root of Trust

Runtime
Isolation of critical runtime services available while the OS is running:

» BIOS update, power management, UEFI variables handling, etc.

— our focus is on the System Management Mode (SMM)
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Introducing the System Management Mode (SMM) t]

SMM is the highest privileged execution mode for x86 processors.

How to enter the SMM?

» Trigger a System Management Interrupt (SMI)

> SMIs code & data are stored in a protected memory region: System
Management RAM (SMRAM)

BIOS code is not exempt from vulnerabilities affecting SMM
(Bazhaniuk et al. 2015; Bulygin et al. 2017; Pujos 2016)

Why is it interesting for an attacker?

» Only mode that can write to the flash containing the BIOS
> Arbitrary code execution in SMM gives full control of the platform
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Our objective t]

Our goal is to detect attacks that modify the expected behavior of the SMM by
monitoring its behavior at runtime.

Response 1 Raise aler.t or
— N > Stop execution or |
Behavior | !

A

Runtime v . i
Firmware Monitoring Monitor| to-o----moooo---

Such goal raises the following questions:

» How to ensure the integrity of the monitor?
» How to define a correct behavior?

» How to monitor?
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Approach overview (Chevalier et al. 2017)
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Approach overview (Chevalier et al. 2017)

Monitor

How to ensure the
integrity of the monitor?
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Approach overview (Chevalier et al. 2017)

. Semantic gap?
Monitor

How to ensure the
integrity of the monitor?
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Approach overview (Chevalier et al. 2017)

How to monitor?

. bridging the semantic gap
Monitor Target

Unidirectional

How to ensure the
integrity of the monitor?

LLVM-based

) Instrumented
Compiler

SMM code

BIOS source codg
SMM source
code
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Approach overview (Chevalier et al. 2017)

How to monitor?

. bridging the semantic gap
Monitor Target

Unidirectional

How to ensure the
integrity of the monitor?

Expected L HEzses Instrumented

target behavior Compiler SMM code

BIOS source codg

SMM source How to define a correct behavior?
code
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How to define a correct behavior?

Our use case: SMM code

» Written in unsafe languages (i.e., C & assembly)
— Such languages are often targeted by attacks hijacking the control flow

» Tightly coupled to hardware
— Such software modifies hardware configuration registers

Control Flow Graph (CFG)
Define the control flow that the software is expected to follow

— Control Flow Integrity (CFI)
Invariants on CPU registers
Define rules that registers are expected to satisfy

— CPU registers integrity
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Control Flow Integrity (CFI): principle

Example

void auth(int a, int b) {
char buffer([512];

[...vuln...]

verification(buffer);

}
void verification(char *input) {
if (strcmp(input, "secret") == 0)
authenticated();
else

non_authenticated();

Simplified graph

Authenticated

Non
authenticated

<—| verification |<—| auth |
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Control Flow Integrity (CFI): principle

Example

void auth(int a, int b) {
char buffer([512];

[...vuln...]

verification(buffer);

}
void verification(char *input) {
if (strcmp(input, "secret") == 0)
authenticated();
else

non_authenticated();

Simplified graph

Authenticated

Non
authenticated

<—| verification |<—| auth |
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Control Flow Integrity (CFI): principle

Example Simplified graph

void auth(int a, int b) { Authenticated

char buffer([512];

[...vuln...] Non <—| verification |<—| auth |

authenticated

verification(buffer);

}
void verification(char *input) {
if (strcmp(input, "secret") == 0)
authenticated();
else

non_authenticated();

Goal: constrain the execution path to follow a control-flow graph (CFG)
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CPU registers integrity t]

SMM code is tightly coupled to hardware

» Generic detection methods (e.g., CFI) are not aware of hardware specificities

» Adhoc detection methods are needed

Some interesting registers for an attacker

» SMBASE: Defines the SMM entry point
» CR3: Physical address of the page directory

— Their value is saved in memory and is not supposed to change at runtime

How to protect such registers?

» Send the expected values at boot time
» Send current values at runtime to detect any discrepancy
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Communication channel constraints t]

Security constraints
» Message integrity
» Chronological order

> Exclusive access

Performance constraints

> Acceptable latency of an SMI as defined by Intel BIOS Test Suite: 150 us

» More than 150 ps per SMI handler leads to degradation of performance or
user experience
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Communication channel design t]

Additional hardware component

» Chronological order
— FIFO
Restricted

> Message integrity FIFO

— Restricted FIFO In SMM?
(SMIACTH)

» Exclusive access

— Check if CPU is in SMM (SMIACT# signal)
> Performance

— Use a low latency interconnect
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Our experimental setup t]

Our prototype is implemented in a simulated and emulated environment
SMM code implementations used

» EDK2: foundation of many BlOSes (Apple, HP, Intel,...)
— UEFI Variables SMI handlers

» coreboot: perform hardware initialization (used on some Chromebooks)
— Hardware-specific SMI handlers

We want to emulate SMM environment and features
QEMU emulator for security evaluation

We want to simulate accurately the performance impact
gems simulator for performance evaluation
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Security evaluation t]

We simulated attacks that exploited vulnerabilities similar to those found in
real-world BIOSes

Vulnerability Attack Target  Security Advisories Detected

Buffer overflow Return address CVE-2013-3582 Yes
Arbitrary write Function pointer CVE-2016-8103 Yes
Arbitrary write SMBASE LEN-4710 Yes

Insecure call ~ Function pointer LEN-8324 Yes
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Running time overhead for SMI handlers

» Under the 150 microseconds limit defined by Intel
> Most of the communication overhead is due to the shadow call stack

EDK2 coreboot
~o-mw BN Original ' 30~ : ‘
‘g Il Communication overhead :
8 4O e I [nstrumentation overhead ) 25 -
2 i | |
% 30 - } - 20 -
=
Q
E 20- 5
=2
o 1.0 -
E 10 -
& 05 -
o~
SetVariable GetVariable Query GetNext 0.0 -
VariableInfo  VariableName i82801gx  i82801gx  i82801gx AMD Agesa AMD Agesa
APMC TCO PM1 APMC GPE
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Lessons learned t]

» SMM code can be vulnerable to memory errors

> Attackers exploiting such vulnerabilities can gain full control of the
platform

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020



Lessons learned t]

» SMM code can be vulnerable to memory errors

> Attackers exploiting such vulnerabilities can gain full control of the
platform

» We can detect such attacks using a behavior and event-based intrusion
detection system implemented on an isolated co-processor

» Acceptable performance (< 150 ps Intel threshold)
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Lessons learned t]

» SMM code can be vulnerable to memory errors

> Attackers exploiting such vulnerabilities can gain full control of the
platform

» We can detect such attacks using a behavior and event-based intrusion
detection system implemented on an isolated co-processor

» Acceptable performance (< 150 ps Intel threshold)

» What can we do next?
- React and restore the platform in a sane state
- Implement other detection approaches to detect other classes of attacks (e.g
non-control data attacks)
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Cybersecurity thematic semesters t]

Objectives
» Promote the scientific, teaching and industrial transfer activities on a
specific subject
> Identify scientific and technological challenges in that field
> Propose a strategic action plan

Organization and funding
» Funded by the DGA

» Managed by Inria, on behalf of all the partners of the PEC research centre
(Pole d’excellence cyber)

» Led by one or several researchers from PEC partners

https://semestres-cyber.inria.fr/en/
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https://semestres-cyber.inria.fr/en/

SILM thematic semester t]

leeda- @ IRISA -7

CentraleSupélec

Actions
» Organization of different events: a summer school, dedicated workshops
and a regular seminar
» Animation of a working group and publication of a white-paper
» Invitation of researchers
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https://silm.inria.fr/

Three complementary research areas t]

1. Analysing the behavior and state of hardware components
Fuzzing
Reverse-engineering
Trace mechanisms
Automated specification analysis
2. Assessing the security of these hardware components
- Side-channel attacks
- Fault injection
- Exploiting unspecified behaviors
3. Detecting or preventing software attacks

- Using dedicated hardware components
- Software countermeasures against hardware vulnerabilities
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Organization team

G. Hiet
(CS/Inria, CIDRE)
Project coordinator, Workshops, Working Group & White Book

(AN
J.-L. Lanet F. Tronel R. Lashermes
(Inria LHS/CIDRE) (CNRS, EMSEC) (cS/Inria, CIDRE) (Inria)
Workshops Summer school Workshops, Summer Seminar
school
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SILM Summer School of the GDR Sécurité Informatique t]

E Tl ‘

» 47 participants from 7 countries: students, young researchers and engineers
> Lectures, labs and CTF, over 4 days and a half

» Organizing committee: Clémentine Maurice, Frédéric Tronel

» Slides and videos of the presentations available on the web site

https://silm-school.inria.fr/
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https://silm-school.inria.fr/

SILM Workshop 2019 t]

» November 20-21 2019 in Rennes, France during the European Cyber Week
> First session in common with C&ESAR conference

» 11 invited speakers + 1 paper accepted by C&ESAR conference

» Organizing committee: Guillaume Hiet, Frédéric Tronel, Jean-Louis Lanet
» Slides and videos of the presentations available on the web site

https://silm-workshop.inria.fr
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https://silm-workshop.inria.fr

SILM Workshop 2020

> June 19, 2020 in Genova, Italy

» Workshop collocated with the 5th IEEE European Symposium on Security
and Privacy

» Invited speakers + CFP

» Organizing committee: Guillaume Hiet, Frédéric Tronel, Jean-Louis Lanet

» Submit articles!

https://silm-workshop-2020.inria.fr

020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020


https://silm-workshop-2020.inria.fr

Seminar and Working Group t]

SILM Seminar
» One Friday/month, 2 presentations, at Inria in Rennes, France
» Organizing committee: Ronan Lashermes
» Slides and videos of the presentations available on the web site

https://semestres-cyber.inria.fr/en/silm-seminar/

Working group

> Objectives: review the state-of-the-art, identify scientific challenges,
technical obstacles, industrial transfer perspectives
» Managed by Guillaume Hiet

» Deliverables and outcomes: white paper + list of project proposals that
should be funded in priority

2020 | LILLE GRAND PALAIS | WWW.FORUM-FIC.COM | #FIC2020


https://semestres-cyber.inria.fr/en/silm-seminar/

Conclusion
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Conclusion t]

Vulnerabilities on CPU micro-architectures and firmware are a serious issue

> Be careful of the considered threat model

» Often combined vulnerabilities in hardware (weak isolation) and software
(use of vulnerable algorithms)

What can we do?

» Remove hardware optimization (HT, speculative execution, cache, etc.)?
- Implies a huge impact on performances!

» Patch vulnerable code
- How can we patch all the vulnerabilities? What about third parties?

» Propose generic solutions combining hardware and software

- We need hardware support (same story as memory errors)
- Such mechanism has to be configured by software (0S, application or compiler
support)
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Control Flow Integrity (CFI): type-based verification

We focus on indirect branches integrity

Type-based verification
Ensures the integrity of indirect calls

typedef struct SomeStruct {
[...]
char (*foo) (int);

} SomeStruct;

int bar(SomeStruct *s) {

char c;

[...]

c = s—>foo(31);
[...]

}
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Control Flow Integrity (CFI): type-based verification

We focus on indirect branches integrity

Type-based verification
Ensures the integrity of indirect calls

Compile time i
SMM source p Target Runtime
code "

Compilation

typedef struct SomeStruct {

Compile time i
[...] p Monitor Runtime
char (*foo) (int); !
} SomeStruct; 1

int bar(SomeStruct *s) {

char c;

[...]

c = s—>foo(31);
[...]

}
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Control Flow Integrity (CFI): type-based verification

We focus on indirect branches integrity

Type-based verification
Ensures the integrity of indirect calls

Compile time i
SMM source p Target Runtime
code "

Compilation

typedef struct SomeStruct { b '
Compile time Runtime

I, 0x0£££b804 i8(i32)|

[...] ~—————————— Monitor
Call site ID Type i
} SomeStruct; L 1561 i8(i32) :
int bar(SomeStruct *s) { 4852 i3ﬁfis) 1
char c; :
0.1 Function Address | Type 3

0xObefca04 i32()

EEESEREY - cot site 1 = 1561 +/

[...]
}
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Control Flow Integrity (CFI): type-based verification

We focus on indirect branches integrity

Compile time i
SMM source p Target Runtime
code "

Type-based verification

. . . . K Message
Ensures the integrity of indirect calls it Instrumented | .
grity Compitation - "Sremented | Feusien | o |
!
typedef struct SomeStruct { = : Address
Compile time = Runtime
[...] ~—————————— Monitor
char (*foo) (int); call Site D | Type !
} SomeStruct; Lol 1561 i8(i32) '
int bar(SomeStruct *s) { 4852 L
char c; :
[ ] Function Address | Type 3
o [ 0x0£££b804 i8(i32), |
0x0befca0dd i32() !
c = s->foo(31); /* Call Site ID = 1561 */
[...]

}
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Control Flow Integrity (CFI): type-based verification

We focus on indirect branches integrity

Compile time i
SMM source p Target Runtime
code "

Type-based verification

. . . . K Message
Ensures the integrity of indirect calls Compilation R =
o
typedef struct SomeStruct { = : Address
Compile time = Runtime
[...] ~—————————— Monitor
char (*foo) (int); CallSite ID | Type ‘ Message
} SomeStruct; e el T usen [ |
int bar(SomeStruct *s) { CENEET N
Add
char c; | ress
[ ] Function Address | Type 3
e L1 04 |i(iz ‘ valid?
0x0befca0dd i32() i
[SendMessage (1561, s->foo)]

c = s->foo(31); /* Call Site ID = 1561 */
[...]
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Control Flow Integrity (CFI): shadow call stack

Shadow call stack
Ensures integrity of the return address on the stack

SMM source | compile time Runtime
code Target
% A Instrumented 1 Message
Compilation |
SMM code ; Return 0x0£8a520c
! Address
. Runtime
Monitor
Shadow call stack
Message
0x0£8522d0 Return 0x0£8a520¢
0x0£8a520¢ Address
pop

(valid?
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Number and size of equivalence classes for the type-based verifi

Our analysis with EDK Il gave:

» 158 equivalence classes of size 1,
> 24 of size 2,

> 42 of size 3,

» 2 of size 5,

> 1o0fsize o9,

» and 1 of size 13.
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Slide 3, Google

> Slide 8, WikiChip https://en.wikichip.org/

v

vV v v Vv

Slide 9, Instructor materials for "Computer Organization and Design, RISC-V
Edition”, Patterson & Hennessy, 2018

Slide 10, Rian J. Lang
Slides 16, 20 icons made by Smashicons from www.flaticon.com
Slides 17, 19, 15, 26 icons made by Freepik from www.flaticon.com

Slide 15, icon made by monkik from www.flaticon.com
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